This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/two_edge_connected_components"
#include "../lowlink.hpp"
#include <iostream>
#include <vector>
using namespace std;
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
int V, E;
cin >> V >> E;
lowlink graph(V);
while (E--) {
int s, t;
cin >> s >> t;
graph.add_edge(s, t);
}
auto ret = graph.two_edge_connected_components();
cout << ret.size() << '\n';
for (const auto &vec : ret) {
cout << vec.size();
for (auto x : vec) cout << ' ' << x;
cout << '\n';
}
}
#line 1 "graph/test/two-edge-connected-components.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/two_edge_connected_components"
#line 2 "graph/lowlink.hpp"
#include <algorithm>
#include <cassert>
#include <queue>
#include <utility>
#include <vector>
struct lowlink {
int V; // # of vertices
int E; // # of edges
int k;
std::vector<std::vector<std::pair<int, int>>> to;
std::vector<std::pair<int, int>> edges;
std::vector<int> root_ids; // DFS forestの構築で根になった頂点
std::vector<int> is_bridge; // Whether edge i is bridge or not, size = E
std::vector<int> is_articulation; // whether vertex i is articulation point or not, size = V
// lowlink
std::vector<int> order; // visiting order of DFS tree, size = V
std::vector<int> lowlink_; // size = V
std::vector<int> is_dfstree_edge; // size = E
int tecc_num; // 二重辺連結成分数
std::vector<int> tecc_id; // 各頂点が何個目の二重辺連結成分か
int tvcc_num; // 二重頂点連結成分数
std::vector<int> tvcc_id; // 各辺が何個目の二重頂点連結成分か
lowlink(int V)
: V(V), E(0), k(0), to(V), is_articulation(V, 0), order(V, -1), lowlink_(V, -1),
tecc_num(0), tvcc_num(0) {}
void add_edge(int v1, int v2) {
assert(v1 >= 0 and v1 < V);
assert(v2 >= 0 and v2 < V);
to[v1].emplace_back(v2, E);
to[v2].emplace_back(v1, E);
edges.emplace_back(v1, v2);
is_bridge.push_back(0);
is_dfstree_edge.push_back(0);
tvcc_id.push_back(-1);
E++;
}
std::vector<int> _edge_stack;
int _root_now;
// Build DFS tree
// Complexity: O(V + E)
void dfs_lowlink(int now, int prv_eid = -1) {
if (prv_eid < 0) _root_now = k;
if (prv_eid == -1) root_ids.push_back(now);
order[now] = lowlink_[now] = k++;
for (const auto &nxt : to[now]) {
if (nxt.second == prv_eid) continue;
if (order[nxt.first] < order[now]) _edge_stack.push_back(nxt.second);
if (order[nxt.first] >= 0) {
lowlink_[now] = std::min(lowlink_[now], order[nxt.first]);
} else {
is_dfstree_edge[nxt.second] = 1;
dfs_lowlink(nxt.first, nxt.second);
lowlink_[now] = std::min(lowlink_[now], lowlink_[nxt.first]);
if ((order[now] == _root_now and order[nxt.first] != _root_now + 1) or
(order[now] != _root_now and lowlink_[nxt.first] >= order[now])) {
is_articulation[now] = 1;
}
if (lowlink_[nxt.first] >= order[now]) {
while (true) {
int e = _edge_stack.back();
tvcc_id[e] = tvcc_num;
_edge_stack.pop_back();
if (e == nxt.second) break;
}
tvcc_num++;
}
}
}
}
void build() {
for (int v = 0; v < V; ++v) {
if (order[v] < 0) dfs_lowlink(v);
}
// Find all bridges
// Complexity: O(V + E)
for (int i = 0; i < E; i++) {
int v1 = edges[i].first, v2 = edges[i].second;
if (order[v1] > order[v2]) std::swap(v1, v2);
is_bridge[i] = order[v1] < lowlink_[v2];
}
}
// Find two-edge-connected components and classify all vertices
// Complexity: O(V + E)
std::vector<std::vector<int>> two_edge_connected_components() {
build();
tecc_num = 0;
tecc_id.assign(V, -1);
std::vector<int> st;
for (int i = 0; i < V; i++) {
if (tecc_id[i] != -1) continue;
tecc_id[i] = tecc_num;
st.push_back(i);
while (!st.empty()) {
int now = st.back();
st.pop_back();
for (const auto &edge : to[now]) {
int nxt = edge.first;
if (tecc_id[nxt] >= 0 or is_bridge[edge.second]) continue;
tecc_id[nxt] = tecc_num;
st.push_back(nxt);
}
}
++tecc_num;
}
std::vector<std::vector<int>> ret(tecc_num);
for (int i = 0; i < V; ++i) ret[tecc_id[i]].push_back(i);
return ret;
}
// Find biconnected components and enumerate vertices for each component.
// Complexity: O(V \log V + E)
std::vector<std::vector<int>> biconnected_components_by_vertices() {
build();
std::vector<std::vector<int>> ret(tvcc_num);
for (int i = 0; i < E; ++i) {
ret[tvcc_id[i]].push_back(edges[i].first);
ret[tvcc_id[i]].push_back(edges[i].second);
}
for (auto &vec : ret) {
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
}
for (int i = 0; i < V; ++i) {
if (to[i].empty()) ret.push_back({i});
}
return ret;
}
// Find biconnected components and classify all edges
// Complexity: O(V + E)
std::vector<std::vector<int>> biconnected_components_by_edges() {
build();
std::vector<std::vector<int>> ret(tvcc_num);
for (int i = 0; i < E; ++i) ret[tvcc_id[i]].push_back(i);
return ret;
}
};
#line 3 "graph/test/two-edge-connected-components.test.cpp"
#include <iostream>
#line 5 "graph/test/two-edge-connected-components.test.cpp"
using namespace std;
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
int V, E;
cin >> V >> E;
lowlink graph(V);
while (E--) {
int s, t;
cin >> s >> t;
graph.add_edge(s, t);
}
auto ret = graph.two_edge_connected_components();
cout << ret.size() << '\n';
for (const auto &vec : ret) {
cout << vec.size();
for (auto x : vec) cout << ' ' << x;
cout << '\n';
}
}