This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub hitonanode/cplib-cpp
#define PROBLEM "https://yukicoder.me/problems/no/1602" #include "../nonzero_path_of_group_labeled_graph.hpp" struct G { unsigned g; G(unsigned x = 0) : g(x) {} G operator-() const noexcept { return *this; } G operator+(const G &r) const noexcept { return G(g ^ r.g); } bool operator==(const G &x) const noexcept { return g == x.g; } }; #include <iostream> #include <string> using namespace std; constexpr long long INF = 1LL << 60; int main() { int N, M, K; cin >> N >> M >> K; ShortestNonzeroPath<long long, INF, G> graph(N); while (M--) { int a, b, c; string x; cin >> a >> b >> c >> x; unsigned m = 0; for (auto c : x) m = m * 2 + c - '0'; a--, b--; graph.add_bi_edge(a, b, c, m); } graph.solve(N - 1); for (int i = 0; i < N - 1; i++) cout << (graph.dist[i] == INF ? -1 : graph.dist[i]) << '\n'; }
#line 1 "graph/test/nonzero_path_of_group_labeled_graph.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1602" #line 2 "graph/nonzero_path_of_group_labeled_graph.hpp" #include <cassert> #include <queue> #include <tuple> #include <vector> // CUT begin // Single-source unorthodox shortest paths // Complexity: O(M log M) // This implementation is based on: https://gist.github.com/wata-orz/d3037bd0b919c76dd9ddc0379e1e3192 // Reference: // [1] Y. Iwata and Y. Yamaguchi, "Finding a Shortest Non-zero Path in Group-Labeled Graphs," // https://arxiv.org/abs/1906.04062 template <class T, T INF, class G> struct ShortestNonzeroPath { int V; std::vector<std::vector<std::tuple<int, T, G>>> to; ShortestNonzeroPath(int n) : V(n), to(n) { static_assert(INF > 0, "INF must be positive"); } void add_bi_edge(int u, int v, T len, G g) { assert(u >= 0 and u < V); assert(v >= 0 and v < V); assert(len >= 0); to[u].emplace_back(v, len, g); to[v].emplace_back(u, len, -g); } private: std::vector<T> dist_sp; std::vector<int> parent_sp, depth_sp; std::vector<G> psi; // psi[path = v0v1...vn] = psi[v0v1] * psi[v1v2] * ... * psi[v(n - 1)vn] std::vector<int> uf_ps; int _find(int x) { if (uf_ps[x] == -1) { return x; } else { return uf_ps[x] = _find(uf_ps[x]); } } void _unite(int r, int c) { uf_ps[c] = r; } public: int s; std::vector<T> dist; // dist[i] = Shortest distance of nonzero path from s to i void solve(int s_) { s = s_; assert(s >= 0 and s < V); // Solve SSSP { dist_sp.assign(V, INF); depth_sp.assign(V, -1), parent_sp.assign(V, -1); psi.assign(V, G()); std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>> que; dist_sp[s] = 0, depth_sp[s] = 0; que.emplace(0, s); while (que.size()) { T d, l; int u, v; G g; std::tie(d, u) = que.top(); que.pop(); if (dist_sp[u] != d) continue; for (const auto &p : to[u]) { std::tie(v, l, g) = p; const auto d2 = d + l; if (dist_sp[v] > d2) { dist_sp[v] = d2, depth_sp[v] = depth_sp[u] + 1, parent_sp[v] = u, psi[v] = psi[u] + g; que.emplace(d2, v); } } } } uf_ps.assign(V, -1); using P = std::tuple<T, int, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> que; for (int u = 0; u < V; u++) { if (dist_sp[u] == INF) continue; for (int i = 0; i < int(to[u].size()); i++) { int v; T l; G g; std::tie(v, l, g) = to[u][i]; if (u < v and !(psi[u] + g == psi[v])) que.emplace(dist_sp[u] + dist_sp[v] + l, u, i); } } dist.assign(V, INF); while (que.size()) { T h; int u0, i; std::tie(h, u0, i) = que.top(); que.pop(); const int v0 = std::get<0>(to[u0][i]); int u = _find(u0), v = _find(v0); std::vector<int> bs; while (u != v) { if (depth_sp[u] > depth_sp[v]) { bs.push_back(u), u = _find(parent_sp[u]); } else { bs.push_back(v), v = _find(parent_sp[v]); } } for (const int x : bs) { _unite(u, x); dist[x] = h - dist_sp[x]; for (int i = 0; i < int(to[x].size()); i++) { int y; T l; G g; std::tie(y, l, g) = to[x][i]; if (psi[x] + g == psi[y]) { que.emplace(dist[x] + dist_sp[y] + l, x, i); } } } } for (int i = 0; i < V; i++) { if (!(psi[i] == G()) and dist_sp[i] < dist[i]) dist[i] = dist_sp[i]; } } }; /* Example of group G: struct G { unsigned g; G(unsigned x = 0) : g(x) {} G operator-() const noexcept { return *this; } G operator+(const G &r) const noexcept { return G(g ^ r.g); } bool operator==(const G &x) const noexcept { return g == x.g; } }; */ #line 3 "graph/test/nonzero_path_of_group_labeled_graph.test.cpp" struct G { unsigned g; G(unsigned x = 0) : g(x) {} G operator-() const noexcept { return *this; } G operator+(const G &r) const noexcept { return G(g ^ r.g); } bool operator==(const G &x) const noexcept { return g == x.g; } }; #include <iostream> #include <string> using namespace std; constexpr long long INF = 1LL << 60; int main() { int N, M, K; cin >> N >> M >> K; ShortestNonzeroPath<long long, INF, G> graph(N); while (M--) { int a, b, c; string x; cin >> a >> b >> c >> x; unsigned m = 0; for (auto c : x) m = m * 2 + c - '0'; a--, b--; graph.add_bi_edge(a, b, c, m); } graph.solve(N - 1); for (int i = 0; i < N - 1; i++) cout << (graph.dist[i] == INF ? -1 : graph.dist[i]) << '\n'; }