This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/nonzero_path_of_group_labeled_graph.hpp"
各辺 $e$ に群ラベル $g_e$ が付いた無向グラフについて,単一始点 $s$ から各頂点 $v$ への(同一頂点を複数回通らない)パス $(e_1, \dots, e_K)$ であって $g_{e_1} \cdot g_{e_2} \cdot \dots \cdot g_{e_K} \neq 1$ を満たすようなもののうち最短のものの長さを計算する.
struct G { // 群の構造体
unsigned g;
G(unsigned x = 0) : g(x) {} // G() が定義されている必要がある
G operator-() const noexcept { return *this; } // -g が必要
G operator+(const G &r) const noexcept { return G(g ^ r.g); } // g_1 + g_2 が必要
bool operator==(const G &x) const noexcept { return g == x.g; } // g_1 = g_2 が必要
};
ShortestNonzeroPath<long long, 1LL << 60, G> graph(N);
int a, b;
long long len;
G g;
graph.add_bi_edge(a, b, len, g); // a -> b の長さ len, 群ラベル g の辺を追加(b -> a に通ると -g)
graph.solve(s);
long long ret = graph.dist[t];
#pragma once
#include <cassert>
#include <queue>
#include <tuple>
#include <vector>
// CUT begin
// Single-source unorthodox shortest paths
// Complexity: O(M log M)
// This implementation is based on: https://gist.github.com/wata-orz/d3037bd0b919c76dd9ddc0379e1e3192
// Reference:
// [1] Y. Iwata and Y. Yamaguchi, "Finding a Shortest Non-zero Path in Group-Labeled Graphs,"
// https://arxiv.org/abs/1906.04062
template <class T, T INF, class G> struct ShortestNonzeroPath {
int V;
std::vector<std::vector<std::tuple<int, T, G>>> to;
ShortestNonzeroPath(int n) : V(n), to(n) { static_assert(INF > 0, "INF must be positive"); }
void add_bi_edge(int u, int v, T len, G g) {
assert(u >= 0 and u < V);
assert(v >= 0 and v < V);
assert(len >= 0);
to[u].emplace_back(v, len, g);
to[v].emplace_back(u, len, -g);
}
private:
std::vector<T> dist_sp;
std::vector<int> parent_sp, depth_sp;
std::vector<G> psi; // psi[path = v0v1...vn] = psi[v0v1] * psi[v1v2] * ... * psi[v(n - 1)vn]
std::vector<int> uf_ps;
int _find(int x) {
if (uf_ps[x] == -1) {
return x;
} else {
return uf_ps[x] = _find(uf_ps[x]);
}
}
void _unite(int r, int c) { uf_ps[c] = r; }
public:
int s;
std::vector<T> dist; // dist[i] = Shortest distance of nonzero path from s to i
void solve(int s_) {
s = s_;
assert(s >= 0 and s < V);
// Solve SSSP
{
dist_sp.assign(V, INF);
depth_sp.assign(V, -1), parent_sp.assign(V, -1);
psi.assign(V, G());
std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
std::greater<std::pair<T, int>>>
que;
dist_sp[s] = 0, depth_sp[s] = 0;
que.emplace(0, s);
while (que.size()) {
T d, l;
int u, v;
G g;
std::tie(d, u) = que.top();
que.pop();
if (dist_sp[u] != d) continue;
for (const auto &p : to[u]) {
std::tie(v, l, g) = p;
const auto d2 = d + l;
if (dist_sp[v] > d2) {
dist_sp[v] = d2, depth_sp[v] = depth_sp[u] + 1, parent_sp[v] = u,
psi[v] = psi[u] + g;
que.emplace(d2, v);
}
}
}
}
uf_ps.assign(V, -1);
using P = std::tuple<T, int, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
for (int u = 0; u < V; u++) {
if (dist_sp[u] == INF) continue;
for (int i = 0; i < int(to[u].size()); i++) {
int v;
T l;
G g;
std::tie(v, l, g) = to[u][i];
if (u < v and !(psi[u] + g == psi[v]))
que.emplace(dist_sp[u] + dist_sp[v] + l, u, i);
}
}
dist.assign(V, INF);
while (que.size()) {
T h;
int u0, i;
std::tie(h, u0, i) = que.top();
que.pop();
const int v0 = std::get<0>(to[u0][i]);
int u = _find(u0), v = _find(v0);
std::vector<int> bs;
while (u != v) {
if (depth_sp[u] > depth_sp[v]) {
bs.push_back(u), u = _find(parent_sp[u]);
} else {
bs.push_back(v), v = _find(parent_sp[v]);
}
}
for (const int x : bs) {
_unite(u, x);
dist[x] = h - dist_sp[x];
for (int i = 0; i < int(to[x].size()); i++) {
int y;
T l;
G g;
std::tie(y, l, g) = to[x][i];
if (psi[x] + g == psi[y]) { que.emplace(dist[x] + dist_sp[y] + l, x, i); }
}
}
}
for (int i = 0; i < V; i++) {
if (!(psi[i] == G()) and dist_sp[i] < dist[i]) dist[i] = dist_sp[i];
}
}
};
/* Example of group G:
struct G {
unsigned g;
G(unsigned x = 0) : g(x) {}
G operator-() const noexcept { return *this; }
G operator+(const G &r) const noexcept { return G(g ^ r.g); }
bool operator==(const G &x) const noexcept { return g == x.g; }
};
*/
#line 2 "graph/nonzero_path_of_group_labeled_graph.hpp"
#include <cassert>
#include <queue>
#include <tuple>
#include <vector>
// CUT begin
// Single-source unorthodox shortest paths
// Complexity: O(M log M)
// This implementation is based on: https://gist.github.com/wata-orz/d3037bd0b919c76dd9ddc0379e1e3192
// Reference:
// [1] Y. Iwata and Y. Yamaguchi, "Finding a Shortest Non-zero Path in Group-Labeled Graphs,"
// https://arxiv.org/abs/1906.04062
template <class T, T INF, class G> struct ShortestNonzeroPath {
int V;
std::vector<std::vector<std::tuple<int, T, G>>> to;
ShortestNonzeroPath(int n) : V(n), to(n) { static_assert(INF > 0, "INF must be positive"); }
void add_bi_edge(int u, int v, T len, G g) {
assert(u >= 0 and u < V);
assert(v >= 0 and v < V);
assert(len >= 0);
to[u].emplace_back(v, len, g);
to[v].emplace_back(u, len, -g);
}
private:
std::vector<T> dist_sp;
std::vector<int> parent_sp, depth_sp;
std::vector<G> psi; // psi[path = v0v1...vn] = psi[v0v1] * psi[v1v2] * ... * psi[v(n - 1)vn]
std::vector<int> uf_ps;
int _find(int x) {
if (uf_ps[x] == -1) {
return x;
} else {
return uf_ps[x] = _find(uf_ps[x]);
}
}
void _unite(int r, int c) { uf_ps[c] = r; }
public:
int s;
std::vector<T> dist; // dist[i] = Shortest distance of nonzero path from s to i
void solve(int s_) {
s = s_;
assert(s >= 0 and s < V);
// Solve SSSP
{
dist_sp.assign(V, INF);
depth_sp.assign(V, -1), parent_sp.assign(V, -1);
psi.assign(V, G());
std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
std::greater<std::pair<T, int>>>
que;
dist_sp[s] = 0, depth_sp[s] = 0;
que.emplace(0, s);
while (que.size()) {
T d, l;
int u, v;
G g;
std::tie(d, u) = que.top();
que.pop();
if (dist_sp[u] != d) continue;
for (const auto &p : to[u]) {
std::tie(v, l, g) = p;
const auto d2 = d + l;
if (dist_sp[v] > d2) {
dist_sp[v] = d2, depth_sp[v] = depth_sp[u] + 1, parent_sp[v] = u,
psi[v] = psi[u] + g;
que.emplace(d2, v);
}
}
}
}
uf_ps.assign(V, -1);
using P = std::tuple<T, int, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
for (int u = 0; u < V; u++) {
if (dist_sp[u] == INF) continue;
for (int i = 0; i < int(to[u].size()); i++) {
int v;
T l;
G g;
std::tie(v, l, g) = to[u][i];
if (u < v and !(psi[u] + g == psi[v]))
que.emplace(dist_sp[u] + dist_sp[v] + l, u, i);
}
}
dist.assign(V, INF);
while (que.size()) {
T h;
int u0, i;
std::tie(h, u0, i) = que.top();
que.pop();
const int v0 = std::get<0>(to[u0][i]);
int u = _find(u0), v = _find(v0);
std::vector<int> bs;
while (u != v) {
if (depth_sp[u] > depth_sp[v]) {
bs.push_back(u), u = _find(parent_sp[u]);
} else {
bs.push_back(v), v = _find(parent_sp[v]);
}
}
for (const int x : bs) {
_unite(u, x);
dist[x] = h - dist_sp[x];
for (int i = 0; i < int(to[x].size()); i++) {
int y;
T l;
G g;
std::tie(y, l, g) = to[x][i];
if (psi[x] + g == psi[y]) { que.emplace(dist[x] + dist_sp[y] + l, x, i); }
}
}
}
for (int i = 0; i < V; i++) {
if (!(psi[i] == G()) and dist_sp[i] < dist[i]) dist[i] = dist_sp[i];
}
}
};
/* Example of group G:
struct G {
unsigned g;
G(unsigned x = 0) : g(x) {}
G operator-() const noexcept { return *this; }
G operator+(const G &r) const noexcept { return G(g ^ r.g); }
bool operator==(const G &x) const noexcept { return g == x.g; }
};
*/