cplib-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub hitonanode/cplib-cpp

:warning: geometry/problem_of_apollonius.hpp

Depends on

Code

#pragma once
#include "../utilities/quadratic_solver.hpp"
#include "geometry.hpp"
#include <utility>
#include <vector>

// CUT begin
// アポロニウスの問題:3円に接する円の中心と半径
// Verify: TCO 2020 North America Qualifier 1000
// input:
// - Center* : 各円の中心座標
// - Radius* : 各円の半径
// - sgn*    : 外接(-1) / 内接(1)
// retval:
// - [(Center, Radius), ...] (条件をみたす円は複数存在しうる)
template <typename Float>
std::vector<std::pair<Point2d<Float>, Float>>
Problem_of_Apollonius(Point2d<Float> Center1, Float Radius1, Point2d<Float> Center2, Float Radius2,
                      Point2d<Float> Center3, Float Radius3, int sgn1, int sgn2, int sgn3) {
    Center2 = Center2 - Center1, Center3 = Center3 - Center1;
    Float a2 = -Center2.x * 2, b2 = -Center2.y * 2, c2 = (-Radius1 * sgn1 + Radius2 * sgn2) * 2,
          d2 = -Radius1 * Radius1 - Center2.norm2() + Radius2 * Radius2;
    Float a3 = -Center3.x * 2, b3 = -Center3.y * 2, c3 = (-Radius1 * sgn1 + Radius3 * sgn3) * 2,
          d3 = -Radius1 * Radius1 - Center3.norm2() + Radius3 * Radius3;
    Float denom = a2 * b3 - b2 * a3;
    std::vector<std::pair<Point2d<Float>, Float>> ret_circles;
    if (denom == 0) return ret_circles;
    Point2d<Float> v0((b3 * d2 - b2 * d3) / denom, (-a3 * d2 + a2 * d3) / denom),
        v1((-b3 * c2 + b2 * c3) / denom, (a3 * c2 - a2 * c3) / denom);
    Float A = v1.norm2() - 1, B = 2 * (v1.dot(v0) + Radius1 * sgn1),
          C = v0.norm2() - Radius1 * Radius1;
    auto quad_ret = quadratic_solver(A, B, C);
    for (const auto r : quad_ret.second) {
        if (r >= 0.0) {
            Point2d<Float> Center = v0 + v1 * r + Center1;
            ret_circles.emplace_back(Center, r);
        }
    }
    return ret_circles;
};
#line 2 "utilities/quadratic_solver.hpp"
#include <cmath>
#include <utility>
#include <vector>

// CUT begin
// Solve ax^2 + bx + c = 0.
// retval: (# of solutions (-1 == inf.), solutions(ascending order))
// Verify: <https://yukicoder.me/problems/no/955> <https://atcoder.jp/contests/tricky/tasks/tricky_2>
template <typename Float>
std::pair<int, std::vector<Float>> quadratic_solver(Float A, Float B, Float C) {
    if (B < 0) A = -A, B = -B, C = -C;
    if (A == 0) {
        if (B == 0) {
            if (C == 0)
                return std::make_pair(-1, std::vector<Float>{}); // all real numbers
            else
                return std::make_pair(0, std::vector<Float>{}); // no solution
        } else
            return std::make_pair(1, std::vector<Float>{-C / B});
    }
    Float D = B * B - 4 * A * C;
    if (D < 0) return std::make_pair(0, std::vector<Float>{});
    if (D == 0) return std::make_pair(1, std::vector<Float>{-B / (2 * A)});
    Float ret1 = (-B - sqrt(D)) / (2 * A), ret2 = C / A / ret1;
    if (ret1 > ret2) std::swap(ret1, ret2);
    return std::make_pair(2, std::vector<Float>{ret1, ret2});
}
#line 2 "geometry/geometry.hpp"
#include <algorithm>
#include <cassert>
#line 5 "geometry/geometry.hpp"
#include <complex>
#include <iostream>
#include <tuple>
#line 10 "geometry/geometry.hpp"

// CUT begin
template <typename T_P> struct Point2d {
    static T_P EPS;
    static void set_eps(T_P e) { EPS = e; }
    T_P x, y;
    Point2d() : x(0), y(0) {}
    Point2d(T_P x, T_P y) : x(x), y(y) {}
    Point2d(const std::pair<T_P, T_P> &p) : x(p.first), y(p.second) {}
    Point2d(const std::complex<T_P> &p) : x(p.real()), y(p.imag()) {}
    std::complex<T_P> to_complex() const noexcept { return {x, y}; }
    Point2d operator+(const Point2d &p) const noexcept { return Point2d(x + p.x, y + p.y); }
    Point2d operator-(const Point2d &p) const noexcept { return Point2d(x - p.x, y - p.y); }
    Point2d operator*(const Point2d &p) const noexcept {
        static_assert(std::is_floating_point<T_P>::value == true);
        return Point2d(x * p.x - y * p.y, x * p.y + y * p.x);
    }
    Point2d operator*(T_P d) const noexcept { return Point2d(x * d, y * d); }
    Point2d operator/(T_P d) const noexcept {
        static_assert(std::is_floating_point<T_P>::value == true);
        return Point2d(x / d, y / d);
    }
    Point2d inv() const {
        static_assert(std::is_floating_point<T_P>::value == true);
        return conj() / norm2();
    }
    Point2d operator/(const Point2d &p) const { return (*this) * p.inv(); }
    bool operator<(const Point2d &r) const noexcept { return x != r.x ? x < r.x : y < r.y; }
    bool operator==(const Point2d &r) const noexcept { return x == r.x and y == r.y; }
    bool operator!=(const Point2d &r) const noexcept { return !((*this) == r); }
    T_P dot(Point2d p) const noexcept { return x * p.x + y * p.y; }
    T_P det(Point2d p) const noexcept { return x * p.y - y * p.x; }
    T_P absdet(Point2d p) const noexcept { return std::abs(det(p)); }
    T_P norm() const noexcept {
        static_assert(std::is_floating_point<T_P>::value == true);
        return std::sqrt(x * x + y * y);
    }
    T_P norm2() const noexcept { return x * x + y * y; }
    T_P arg() const noexcept { return std::atan2(y, x); }
    // rotate point/vector by rad
    Point2d rotate(T_P rad) const noexcept {
        static_assert(std::is_floating_point<T_P>::value == true);
        return Point2d(x * std::cos(rad) - y * std::sin(rad), x * std::sin(rad) + y * std::cos(rad));
    }
    Point2d normalized() const {
        static_assert(std::is_floating_point<T_P>::value == true);
        return (*this) / this->norm();
    }
    Point2d conj() const noexcept { return Point2d(x, -y); }

    template <class IStream> friend IStream &operator>>(IStream &is, Point2d &p) {
        T_P x, y;
        is >> x >> y;
        p = Point2d(x, y);
        return is;
    }
    template <class OStream> friend OStream &operator<<(OStream &os, const Point2d &p) {
        return os << '(' << p.x << ',' << p.y << ')';
    }
};
template <> double Point2d<double>::EPS = 1e-9;
template <> long double Point2d<long double>::EPS = 1e-12;
template <> long long Point2d<long long>::EPS = 0;

template <typename T_P>
int ccw(const Point2d<T_P> &a, const Point2d<T_P> &b, const Point2d<T_P> &c) {
    // a->b->cの曲がり方
    Point2d<T_P> v1 = b - a;
    Point2d<T_P> v2 = c - a;
    if (v1.det(v2) > Point2d<T_P>::EPS) return 1;   // 左折
    if (v1.det(v2) < -Point2d<T_P>::EPS) return -1; // 右折
    if (v1.dot(v2) < -Point2d<T_P>::EPS) return 2;  // c-a-b
    if (v1.norm() < v2.norm()) return -2;           // a-b-c
    return 0;                                       // a-c-b
}

// Convex hull (凸包)
// return: IDs of vertices used for convex hull, counterclockwise
// include_boundary: If true, interior angle pi is allowed
template <typename T_P>
std::vector<int> convex_hull(const std::vector<Point2d<T_P>> &ps, bool include_boundary = false) {
    int n = ps.size();
    if (n <= 1) return std::vector<int>(n, 0);
    std::vector<std::pair<Point2d<T_P>, int>> points(n);
    for (size_t i = 0; i < ps.size(); i++) points[i] = std::make_pair(ps[i], i);
    std::sort(points.begin(), points.end());
    int k = 0;
    std::vector<std::pair<Point2d<T_P>, int>> qs(2 * n);
    auto ccw_check = [&](int c) { return include_boundary ? (c == -1) : (c <= 0); };
    for (int i = 0; i < n; i++) {
        while (k > 1 and ccw_check(ccw(qs[k - 2].first, qs[k - 1].first, points[i].first))) k--;
        qs[k++] = points[i];
    }
    for (int i = n - 2, t = k; i >= 0; i--) {
        while (k > t and ccw_check(ccw(qs[k - 2].first, qs[k - 1].first, points[i].first))) k--;
        qs[k++] = points[i];
    }
    std::vector<int> ret(k - 1);
    for (int i = 0; i < k - 1; i++) ret[i] = qs[i].second;
    return ret;
}

// Solve r1 + t1 * v1 == r2 + t2 * v2
template <typename T_P, typename std::enable_if<std::is_floating_point<T_P>::value>::type * = nullptr>
Point2d<T_P> lines_crosspoint(Point2d<T_P> r1, Point2d<T_P> v1, Point2d<T_P> r2, Point2d<T_P> v2) {
    static_assert(std::is_floating_point<T_P>::value == true);
    assert(v2.det(v1) != 0);
    return r1 + v1 * (v2.det(r2 - r1) / v2.det(v1));
}

// Whether two segments s1t1 & s2t2 intersect or not (endpoints not included)
// Google Code Jam 2013 Round 3 - Rural Planning
// Google Code Jam 2021 Round 3 - Fence Design
template <typename T>
bool intersect_open_segments(Point2d<T> s1, Point2d<T> t1, Point2d<T> s2, Point2d<T> t2) {
    if (s1 == t1 or s2 == t2) return false; // Not segment but point
    int nbad = 0;
    for (int t = 0; t < 2; t++) {
        Point2d<T> v1 = t1 - s1, v2 = t2 - s2;
        T den = v2.det(v1);
        if (den == 0) {
            if (s1.det(v1) == s2.det(v1)) {
                auto L1 = s1.dot(v1), R1 = t1.dot(v1);
                auto L2 = s2.dot(v1), R2 = t2.dot(v1);
                if (L1 > R1) std::swap(L1, R1);
                if (L2 > R2) std::swap(L2, R2);
                if (L1 > L2) std::swap(L1, L2), std::swap(R1, R2);
                return R1 > L2;
            } else {
                return false;
            }
        } else {
            auto num = v2.det(s2 - s1);
            if ((0 < num and num < den) or (den < num and num < 0)) nbad++;
        }
        std::swap(s1, s2);
        std::swap(t1, t2);
    }
    return nbad == 2;
}

// Whether point p is on segment (s, t) (endpoints not included)
// Google Code Jam 2013 Round 3 - Rural Planning
template <typename PointNd> bool is_point_on_open_segment(PointNd s, PointNd t, PointNd p) {
    if (s == t) return false; // not segment but point
    if (p == s or p == t) return false;
    auto v = t - s, w = p - s;
    if (v.absdet(w)) return false;
    auto vv = v.dot(v), vw = v.dot(w);
    return vw > 0 and vw < vv;
}

// Convex cut
// Cut the convex polygon g by line p1->p2 and return the leftward one
template <typename T_P>
std::vector<Point2d<T_P>>
convex_cut(const std::vector<Point2d<T_P>> &g, Point2d<T_P> p1, Point2d<T_P> p2) {
    static_assert(std::is_floating_point<T_P>::value == true);
    assert(p1 != p2);
    std::vector<Point2d<T_P>> ret;
    for (int i = 0; i < (int)g.size(); i++) {
        const Point2d<T_P> &now = g[i], &nxt = g[(i + 1) % g.size()];
        if (ccw(p1, p2, now) != -1) ret.push_back(now);
        if ((ccw(p1, p2, now) == -1) xor (ccw(p1, p2, nxt) == -1)) {
            ret.push_back(lines_crosspoint(now, nxt - now, p1, p2 - p1));
        }
    }
    return ret;
}

// 2円の交点 (ABC157F, SRM 559 Div.1 900)
template <typename T_P>
std::vector<Point2d<T_P>>
IntersectTwoCircles(const Point2d<T_P> &Ca, T_P Ra, const Point2d<T_P> &Cb, T_P Rb) {
    static_assert(std::is_floating_point<T_P>::value == true);
    T_P d = (Ca - Cb).norm();
    if (Ra + Rb < d) return {};
    T_P rc = (d * d + Ra * Ra - Rb * Rb) / (2 * d);
    T_P rs2 = Ra * Ra - rc * rc;
    if (rs2 < 0) return {};
    T_P rs = std::sqrt(rs2);
    Point2d<T_P> diff = (Cb - Ca) / d;
    return {Ca + diff * Point2d<T_P>(rc, rs), Ca + diff * Point2d<T_P>(rc, -rs)};
}

// Solve |x0 + vt| = R (SRM 543 Div.1 1000, GCJ 2016 R3 C)
template <typename PointNd, typename Float>
std::vector<Float> IntersectCircleLine(const PointNd &x0, const PointNd &v, Float R) {
    static_assert(std::is_floating_point<Float>::value == true);
    Float b = Float(x0.dot(v)) / v.norm2();
    Float c = Float(x0.norm2() - Float(R) * R) / v.norm2();
    if (b * b - c < 0) return {};
    Float ret1 = -b + sqrtl(b * b - c) * (b > 0 ? -1 : 1);
    Float ret2 = c / ret1;
    return ret1 < ret2 ? std::vector<Float>{ret1, ret2} : std::vector<Float>{ret2, ret1};
}

// Distance between point p <-> line ab
template <typename PointFloat>
decltype(PointFloat::x)
DistancePointLine(const PointFloat &p, const PointFloat &a, const PointFloat &b) {
    assert(a != b);
    return (b - a).absdet(p - a) / (b - a).norm();
}

// Distance between point p <-> line segment ab
template <typename PointFloat>
decltype(PointFloat::x)
DistancePointSegment(const PointFloat &p, const PointFloat &a, const PointFloat &b) {
    if (a == b) {
        return (p - a).norm();
    } else if ((p - a).dot(b - a) <= 0) {
        return (p - a).norm();
    } else if ((p - b).dot(a - b) <= 0) {
        return (p - b).norm();
    } else {
        return DistancePointLine<PointFloat>(p, a, b);
    }
}

// Area of polygon (might be negative)
template <typename T_P> T_P signed_area_of_polygon(const std::vector<Point2d<T_P>> &poly) {
    static_assert(std::is_floating_point<T_P>::value == true);
    T_P area = 0;
    for (size_t i = 0; i < poly.size(); i++) area += poly[i].det(poly[(i + 1) % poly.size()]);
    return area * 0.5;
}
#line 6 "geometry/problem_of_apollonius.hpp"

// CUT begin
// アポロニウスの問題:3円に接する円の中心と半径
// Verify: TCO 2020 North America Qualifier 1000
// input:
// - Center* : 各円の中心座標
// - Radius* : 各円の半径
// - sgn*    : 外接(-1) / 内接(1)
// retval:
// - [(Center, Radius), ...] (条件をみたす円は複数存在しうる)
template <typename Float>
std::vector<std::pair<Point2d<Float>, Float>>
Problem_of_Apollonius(Point2d<Float> Center1, Float Radius1, Point2d<Float> Center2, Float Radius2,
                      Point2d<Float> Center3, Float Radius3, int sgn1, int sgn2, int sgn3) {
    Center2 = Center2 - Center1, Center3 = Center3 - Center1;
    Float a2 = -Center2.x * 2, b2 = -Center2.y * 2, c2 = (-Radius1 * sgn1 + Radius2 * sgn2) * 2,
          d2 = -Radius1 * Radius1 - Center2.norm2() + Radius2 * Radius2;
    Float a3 = -Center3.x * 2, b3 = -Center3.y * 2, c3 = (-Radius1 * sgn1 + Radius3 * sgn3) * 2,
          d3 = -Radius1 * Radius1 - Center3.norm2() + Radius3 * Radius3;
    Float denom = a2 * b3 - b2 * a3;
    std::vector<std::pair<Point2d<Float>, Float>> ret_circles;
    if (denom == 0) return ret_circles;
    Point2d<Float> v0((b3 * d2 - b2 * d3) / denom, (-a3 * d2 + a2 * d3) / denom),
        v1((-b3 * c2 + b2 * c3) / denom, (a3 * c2 - a2 * c3) / denom);
    Float A = v1.norm2() - 1, B = 2 * (v1.dot(v0) + Radius1 * sgn1),
          C = v0.norm2() - Radius1 * Radius1;
    auto quad_ret = quadratic_solver(A, B, C);
    for (const auto r : quad_ret.second) {
        if (r >= 0.0) {
            Point2d<Float> Center = v0 + v1 * r + Center1;
            ret_circles.emplace_back(Center, r);
        }
    }
    return ret_circles;
};
Back to top page