This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub hitonanode/cplib-cpp
#include "geometry/geometry.hpp"
#pragma once #include <algorithm> #include <cassert> #include <cmath> #include <complex> #include <iostream> #include <tuple> #include <utility> #include <vector> // CUT begin template <typename T_P> struct Point2d { static T_P EPS; static void set_eps(T_P e) { EPS = e; } T_P x, y; Point2d() : x(0), y(0) {} Point2d(T_P x, T_P y) : x(x), y(y) {} Point2d(const std::pair<T_P, T_P> &p) : x(p.first), y(p.second) {} Point2d(const std::complex<T_P> &p) : x(p.real()), y(p.imag()) {} std::complex<T_P> to_complex() const noexcept { return {x, y}; } Point2d operator+(const Point2d &p) const noexcept { return Point2d(x + p.x, y + p.y); } Point2d operator-(const Point2d &p) const noexcept { return Point2d(x - p.x, y - p.y); } Point2d operator*(const Point2d &p) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x * p.x - y * p.y, x * p.y + y * p.x); } Point2d operator*(T_P d) const noexcept { return Point2d(x * d, y * d); } Point2d operator/(T_P d) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x / d, y / d); } Point2d inv() const { static_assert(std::is_floating_point<T_P>::value == true); return conj() / norm2(); } Point2d operator/(const Point2d &p) const { return (*this) * p.inv(); } bool operator<(const Point2d &r) const noexcept { return x != r.x ? x < r.x : y < r.y; } bool operator==(const Point2d &r) const noexcept { return x == r.x and y == r.y; } bool operator!=(const Point2d &r) const noexcept { return !((*this) == r); } T_P dot(Point2d p) const noexcept { return x * p.x + y * p.y; } T_P det(Point2d p) const noexcept { return x * p.y - y * p.x; } T_P absdet(Point2d p) const noexcept { return std::abs(det(p)); } T_P norm() const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return std::sqrt(x * x + y * y); } T_P norm2() const noexcept { return x * x + y * y; } T_P arg() const noexcept { return std::atan2(y, x); } // rotate point/vector by rad Point2d rotate(T_P rad) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x * std::cos(rad) - y * std::sin(rad), x * std::sin(rad) + y * std::cos(rad)); } Point2d normalized() const { static_assert(std::is_floating_point<T_P>::value == true); return (*this) / this->norm(); } Point2d conj() const noexcept { return Point2d(x, -y); } template <class IStream> friend IStream &operator>>(IStream &is, Point2d &p) { T_P x, y; is >> x >> y; p = Point2d(x, y); return is; } template <class OStream> friend OStream &operator<<(OStream &os, const Point2d &p) { return os << '(' << p.x << ',' << p.y << ')'; } }; template <> double Point2d<double>::EPS = 1e-9; template <> long double Point2d<long double>::EPS = 1e-12; template <> long long Point2d<long long>::EPS = 0; template <typename T_P> int ccw(const Point2d<T_P> &a, const Point2d<T_P> &b, const Point2d<T_P> &c) { // a->b->cの曲がり方 Point2d<T_P> v1 = b - a; Point2d<T_P> v2 = c - a; if (v1.det(v2) > Point2d<T_P>::EPS) return 1; // 左折 if (v1.det(v2) < -Point2d<T_P>::EPS) return -1; // 右折 if (v1.dot(v2) < -Point2d<T_P>::EPS) return 2; // c-a-b if (v1.norm() < v2.norm()) return -2; // a-b-c return 0; // a-c-b } // Convex hull (凸包) // return: IDs of vertices used for convex hull, counterclockwise // include_boundary: If true, interior angle pi is allowed template <typename T_P> std::vector<int> convex_hull(const std::vector<Point2d<T_P>> &ps, bool include_boundary = false) { int n = ps.size(); if (n <= 1) return std::vector<int>(n, 0); std::vector<std::pair<Point2d<T_P>, int>> points(n); for (size_t i = 0; i < ps.size(); i++) points[i] = std::make_pair(ps[i], i); std::sort(points.begin(), points.end()); int k = 0; std::vector<std::pair<Point2d<T_P>, int>> qs(2 * n); auto ccw_check = [&](int c) { return include_boundary ? (c == -1) : (c <= 0); }; for (int i = 0; i < n; i++) { while (k > 1 and ccw_check(ccw(qs[k - 2].first, qs[k - 1].first, points[i].first))) k--; qs[k++] = points[i]; } for (int i = n - 2, t = k; i >= 0; i--) { while (k > t and ccw_check(ccw(qs[k - 2].first, qs[k - 1].first, points[i].first))) k--; qs[k++] = points[i]; } std::vector<int> ret(k - 1); for (int i = 0; i < k - 1; i++) ret[i] = qs[i].second; return ret; } // Solve r1 + t1 * v1 == r2 + t2 * v2 template <typename T_P, typename std::enable_if<std::is_floating_point<T_P>::value>::type * = nullptr> Point2d<T_P> lines_crosspoint(Point2d<T_P> r1, Point2d<T_P> v1, Point2d<T_P> r2, Point2d<T_P> v2) { static_assert(std::is_floating_point<T_P>::value == true); assert(v2.det(v1) != 0); return r1 + v1 * (v2.det(r2 - r1) / v2.det(v1)); } // Whether two segments s1t1 & s2t2 intersect or not (endpoints not included) // Google Code Jam 2013 Round 3 - Rural Planning // Google Code Jam 2021 Round 3 - Fence Design template <typename T> bool intersect_open_segments(Point2d<T> s1, Point2d<T> t1, Point2d<T> s2, Point2d<T> t2) { if (s1 == t1 or s2 == t2) return false; // Not segment but point int nbad = 0; for (int t = 0; t < 2; t++) { Point2d<T> v1 = t1 - s1, v2 = t2 - s2; T den = v2.det(v1); if (den == 0) { if (s1.det(v1) == s2.det(v1)) { auto L1 = s1.dot(v1), R1 = t1.dot(v1); auto L2 = s2.dot(v1), R2 = t2.dot(v1); if (L1 > R1) std::swap(L1, R1); if (L2 > R2) std::swap(L2, R2); if (L1 > L2) std::swap(L1, L2), std::swap(R1, R2); return R1 > L2; } else { return false; } } else { auto num = v2.det(s2 - s1); if ((0 < num and num < den) or (den < num and num < 0)) nbad++; } std::swap(s1, s2); std::swap(t1, t2); } return nbad == 2; } // Whether point p is on segment (s, t) (endpoints not included) // Google Code Jam 2013 Round 3 - Rural Planning template <typename PointNd> bool is_point_on_open_segment(PointNd s, PointNd t, PointNd p) { if (s == t) return false; // not segment but point if (p == s or p == t) return false; auto v = t - s, w = p - s; if (v.absdet(w)) return false; auto vv = v.dot(v), vw = v.dot(w); return vw > 0 and vw < vv; } // Convex cut // Cut the convex polygon g by line p1->p2 and return the leftward one template <typename T_P> std::vector<Point2d<T_P>> convex_cut(const std::vector<Point2d<T_P>> &g, Point2d<T_P> p1, Point2d<T_P> p2) { static_assert(std::is_floating_point<T_P>::value == true); assert(p1 != p2); std::vector<Point2d<T_P>> ret; for (int i = 0; i < (int)g.size(); i++) { const Point2d<T_P> &now = g[i], &nxt = g[(i + 1) % g.size()]; if (ccw(p1, p2, now) != -1) ret.push_back(now); if ((ccw(p1, p2, now) == -1) xor (ccw(p1, p2, nxt) == -1)) { ret.push_back(lines_crosspoint(now, nxt - now, p1, p2 - p1)); } } return ret; } // 2円の交点 (ABC157F, SRM 559 Div.1 900) template <typename T_P> std::vector<Point2d<T_P>> IntersectTwoCircles(const Point2d<T_P> &Ca, T_P Ra, const Point2d<T_P> &Cb, T_P Rb) { static_assert(std::is_floating_point<T_P>::value == true); T_P d = (Ca - Cb).norm(); if (Ra + Rb < d) return {}; T_P rc = (d * d + Ra * Ra - Rb * Rb) / (2 * d); T_P rs2 = Ra * Ra - rc * rc; if (rs2 < 0) return {}; T_P rs = std::sqrt(rs2); Point2d<T_P> diff = (Cb - Ca) / d; return {Ca + diff * Point2d<T_P>(rc, rs), Ca + diff * Point2d<T_P>(rc, -rs)}; } // Solve |x0 + vt| = R (SRM 543 Div.1 1000, GCJ 2016 R3 C) template <typename PointNd, typename Float> std::vector<Float> IntersectCircleLine(const PointNd &x0, const PointNd &v, Float R) { static_assert(std::is_floating_point<Float>::value == true); Float b = Float(x0.dot(v)) / v.norm2(); Float c = Float(x0.norm2() - Float(R) * R) / v.norm2(); if (b * b - c < 0) return {}; Float ret1 = -b + sqrtl(b * b - c) * (b > 0 ? -1 : 1); Float ret2 = c / ret1; return ret1 < ret2 ? std::vector<Float>{ret1, ret2} : std::vector<Float>{ret2, ret1}; } // Distance between point p <-> line ab template <typename PointFloat> decltype(PointFloat::x) DistancePointLine(const PointFloat &p, const PointFloat &a, const PointFloat &b) { assert(a != b); return (b - a).absdet(p - a) / (b - a).norm(); } // Distance between point p <-> line segment ab template <typename PointFloat> decltype(PointFloat::x) DistancePointSegment(const PointFloat &p, const PointFloat &a, const PointFloat &b) { if (a == b) { return (p - a).norm(); } else if ((p - a).dot(b - a) <= 0) { return (p - a).norm(); } else if ((p - b).dot(a - b) <= 0) { return (p - b).norm(); } else { return DistancePointLine<PointFloat>(p, a, b); } } // Area of polygon (might be negative) template <typename T_P> T_P signed_area_of_polygon(const std::vector<Point2d<T_P>> &poly) { static_assert(std::is_floating_point<T_P>::value == true); T_P area = 0; for (size_t i = 0; i < poly.size(); i++) area += poly[i].det(poly[(i + 1) % poly.size()]); return area * 0.5; }
#line 2 "geometry/geometry.hpp" #include <algorithm> #include <cassert> #include <cmath> #include <complex> #include <iostream> #include <tuple> #include <utility> #include <vector> // CUT begin template <typename T_P> struct Point2d { static T_P EPS; static void set_eps(T_P e) { EPS = e; } T_P x, y; Point2d() : x(0), y(0) {} Point2d(T_P x, T_P y) : x(x), y(y) {} Point2d(const std::pair<T_P, T_P> &p) : x(p.first), y(p.second) {} Point2d(const std::complex<T_P> &p) : x(p.real()), y(p.imag()) {} std::complex<T_P> to_complex() const noexcept { return {x, y}; } Point2d operator+(const Point2d &p) const noexcept { return Point2d(x + p.x, y + p.y); } Point2d operator-(const Point2d &p) const noexcept { return Point2d(x - p.x, y - p.y); } Point2d operator*(const Point2d &p) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x * p.x - y * p.y, x * p.y + y * p.x); } Point2d operator*(T_P d) const noexcept { return Point2d(x * d, y * d); } Point2d operator/(T_P d) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x / d, y / d); } Point2d inv() const { static_assert(std::is_floating_point<T_P>::value == true); return conj() / norm2(); } Point2d operator/(const Point2d &p) const { return (*this) * p.inv(); } bool operator<(const Point2d &r) const noexcept { return x != r.x ? x < r.x : y < r.y; } bool operator==(const Point2d &r) const noexcept { return x == r.x and y == r.y; } bool operator!=(const Point2d &r) const noexcept { return !((*this) == r); } T_P dot(Point2d p) const noexcept { return x * p.x + y * p.y; } T_P det(Point2d p) const noexcept { return x * p.y - y * p.x; } T_P absdet(Point2d p) const noexcept { return std::abs(det(p)); } T_P norm() const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return std::sqrt(x * x + y * y); } T_P norm2() const noexcept { return x * x + y * y; } T_P arg() const noexcept { return std::atan2(y, x); } // rotate point/vector by rad Point2d rotate(T_P rad) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x * std::cos(rad) - y * std::sin(rad), x * std::sin(rad) + y * std::cos(rad)); } Point2d normalized() const { static_assert(std::is_floating_point<T_P>::value == true); return (*this) / this->norm(); } Point2d conj() const noexcept { return Point2d(x, -y); } template <class IStream> friend IStream &operator>>(IStream &is, Point2d &p) { T_P x, y; is >> x >> y; p = Point2d(x, y); return is; } template <class OStream> friend OStream &operator<<(OStream &os, const Point2d &p) { return os << '(' << p.x << ',' << p.y << ')'; } }; template <> double Point2d<double>::EPS = 1e-9; template <> long double Point2d<long double>::EPS = 1e-12; template <> long long Point2d<long long>::EPS = 0; template <typename T_P> int ccw(const Point2d<T_P> &a, const Point2d<T_P> &b, const Point2d<T_P> &c) { // a->b->cの曲がり方 Point2d<T_P> v1 = b - a; Point2d<T_P> v2 = c - a; if (v1.det(v2) > Point2d<T_P>::EPS) return 1; // 左折 if (v1.det(v2) < -Point2d<T_P>::EPS) return -1; // 右折 if (v1.dot(v2) < -Point2d<T_P>::EPS) return 2; // c-a-b if (v1.norm() < v2.norm()) return -2; // a-b-c return 0; // a-c-b } // Convex hull (凸包) // return: IDs of vertices used for convex hull, counterclockwise // include_boundary: If true, interior angle pi is allowed template <typename T_P> std::vector<int> convex_hull(const std::vector<Point2d<T_P>> &ps, bool include_boundary = false) { int n = ps.size(); if (n <= 1) return std::vector<int>(n, 0); std::vector<std::pair<Point2d<T_P>, int>> points(n); for (size_t i = 0; i < ps.size(); i++) points[i] = std::make_pair(ps[i], i); std::sort(points.begin(), points.end()); int k = 0; std::vector<std::pair<Point2d<T_P>, int>> qs(2 * n); auto ccw_check = [&](int c) { return include_boundary ? (c == -1) : (c <= 0); }; for (int i = 0; i < n; i++) { while (k > 1 and ccw_check(ccw(qs[k - 2].first, qs[k - 1].first, points[i].first))) k--; qs[k++] = points[i]; } for (int i = n - 2, t = k; i >= 0; i--) { while (k > t and ccw_check(ccw(qs[k - 2].first, qs[k - 1].first, points[i].first))) k--; qs[k++] = points[i]; } std::vector<int> ret(k - 1); for (int i = 0; i < k - 1; i++) ret[i] = qs[i].second; return ret; } // Solve r1 + t1 * v1 == r2 + t2 * v2 template <typename T_P, typename std::enable_if<std::is_floating_point<T_P>::value>::type * = nullptr> Point2d<T_P> lines_crosspoint(Point2d<T_P> r1, Point2d<T_P> v1, Point2d<T_P> r2, Point2d<T_P> v2) { static_assert(std::is_floating_point<T_P>::value == true); assert(v2.det(v1) != 0); return r1 + v1 * (v2.det(r2 - r1) / v2.det(v1)); } // Whether two segments s1t1 & s2t2 intersect or not (endpoints not included) // Google Code Jam 2013 Round 3 - Rural Planning // Google Code Jam 2021 Round 3 - Fence Design template <typename T> bool intersect_open_segments(Point2d<T> s1, Point2d<T> t1, Point2d<T> s2, Point2d<T> t2) { if (s1 == t1 or s2 == t2) return false; // Not segment but point int nbad = 0; for (int t = 0; t < 2; t++) { Point2d<T> v1 = t1 - s1, v2 = t2 - s2; T den = v2.det(v1); if (den == 0) { if (s1.det(v1) == s2.det(v1)) { auto L1 = s1.dot(v1), R1 = t1.dot(v1); auto L2 = s2.dot(v1), R2 = t2.dot(v1); if (L1 > R1) std::swap(L1, R1); if (L2 > R2) std::swap(L2, R2); if (L1 > L2) std::swap(L1, L2), std::swap(R1, R2); return R1 > L2; } else { return false; } } else { auto num = v2.det(s2 - s1); if ((0 < num and num < den) or (den < num and num < 0)) nbad++; } std::swap(s1, s2); std::swap(t1, t2); } return nbad == 2; } // Whether point p is on segment (s, t) (endpoints not included) // Google Code Jam 2013 Round 3 - Rural Planning template <typename PointNd> bool is_point_on_open_segment(PointNd s, PointNd t, PointNd p) { if (s == t) return false; // not segment but point if (p == s or p == t) return false; auto v = t - s, w = p - s; if (v.absdet(w)) return false; auto vv = v.dot(v), vw = v.dot(w); return vw > 0 and vw < vv; } // Convex cut // Cut the convex polygon g by line p1->p2 and return the leftward one template <typename T_P> std::vector<Point2d<T_P>> convex_cut(const std::vector<Point2d<T_P>> &g, Point2d<T_P> p1, Point2d<T_P> p2) { static_assert(std::is_floating_point<T_P>::value == true); assert(p1 != p2); std::vector<Point2d<T_P>> ret; for (int i = 0; i < (int)g.size(); i++) { const Point2d<T_P> &now = g[i], &nxt = g[(i + 1) % g.size()]; if (ccw(p1, p2, now) != -1) ret.push_back(now); if ((ccw(p1, p2, now) == -1) xor (ccw(p1, p2, nxt) == -1)) { ret.push_back(lines_crosspoint(now, nxt - now, p1, p2 - p1)); } } return ret; } // 2円の交点 (ABC157F, SRM 559 Div.1 900) template <typename T_P> std::vector<Point2d<T_P>> IntersectTwoCircles(const Point2d<T_P> &Ca, T_P Ra, const Point2d<T_P> &Cb, T_P Rb) { static_assert(std::is_floating_point<T_P>::value == true); T_P d = (Ca - Cb).norm(); if (Ra + Rb < d) return {}; T_P rc = (d * d + Ra * Ra - Rb * Rb) / (2 * d); T_P rs2 = Ra * Ra - rc * rc; if (rs2 < 0) return {}; T_P rs = std::sqrt(rs2); Point2d<T_P> diff = (Cb - Ca) / d; return {Ca + diff * Point2d<T_P>(rc, rs), Ca + diff * Point2d<T_P>(rc, -rs)}; } // Solve |x0 + vt| = R (SRM 543 Div.1 1000, GCJ 2016 R3 C) template <typename PointNd, typename Float> std::vector<Float> IntersectCircleLine(const PointNd &x0, const PointNd &v, Float R) { static_assert(std::is_floating_point<Float>::value == true); Float b = Float(x0.dot(v)) / v.norm2(); Float c = Float(x0.norm2() - Float(R) * R) / v.norm2(); if (b * b - c < 0) return {}; Float ret1 = -b + sqrtl(b * b - c) * (b > 0 ? -1 : 1); Float ret2 = c / ret1; return ret1 < ret2 ? std::vector<Float>{ret1, ret2} : std::vector<Float>{ret2, ret1}; } // Distance between point p <-> line ab template <typename PointFloat> decltype(PointFloat::x) DistancePointLine(const PointFloat &p, const PointFloat &a, const PointFloat &b) { assert(a != b); return (b - a).absdet(p - a) / (b - a).norm(); } // Distance between point p <-> line segment ab template <typename PointFloat> decltype(PointFloat::x) DistancePointSegment(const PointFloat &p, const PointFloat &a, const PointFloat &b) { if (a == b) { return (p - a).norm(); } else if ((p - a).dot(b - a) <= 0) { return (p - a).norm(); } else if ((p - b).dot(a - b) <= 0) { return (p - b).norm(); } else { return DistancePointLine<PointFloat>(p, a, b); } } // Area of polygon (might be negative) template <typename T_P> T_P signed_area_of_polygon(const std::vector<Point2d<T_P>> &poly) { static_assert(std::is_floating_point<T_P>::value == true); T_P area = 0; for (size_t i = 0; i < poly.size(); i++) area += poly[i].det(poly[(i + 1) % poly.size()]); return area * 0.5; }