This documentation is automatically generated by online-judge-tools/verification-helper
#include "sparse_table/sparse_table_2d.hpp"
2D sparse table の実装.AC Library の Segtree と同様のインターフェース.前計算 $O(HW \log HW)$,クエリ $O(1)$.S
の二項演算 op
は結合法則と冪等性が成り立つ必要がある.
S op(S l, S r); // 半群の元同士の演算.
vector<vector<S>> A(H, vector<S>(W)); // 行列.
SparseTable2D<S, op, e> rmq(mat);
cout << st.prod(xl, xr, yl, yr) << '\n'; // 矩形領域積クエリ.
#pragma once
#include "sparse_table.hpp"
#include <cassert>
#include <vector>
// CUT begin
// Static matrix sparse table
// Complexity; O(HWlogHlogW) for precalculation, O(1) per query
template <class S, S (*op)(S, S), S (*e)()> struct SparseTable2D {
int H, lgH, W;
std::vector<std::vector<sparse_table<S, op, e>>> d;
std::vector<int> lgx_table;
SparseTable2D() {}
SparseTable2D(const std::vector<std::vector<S>> &matrix) {
H = matrix.size(), W = (matrix.size() ? matrix[0].size() : 0);
lgx_table.resize(H + 1);
for (int i = 2; i < H + 1; i++) lgx_table[i] = lgx_table[i >> 1] + 1;
lgH = lgx_table[H] + 1;
d.resize(lgH);
for (auto v : matrix) d[0].emplace_back(sparse_table<S, op, e>(v));
for (int h = 1; h < lgH; h++) {
for (int i = 0; i + (1 << h) <= H; ++i) {
std::vector<S> v(W);
for (int j = 0; j < W; ++j) {
v[j] = op(d[h - 1][i].d[0][j], d[h - 1][i + (1 << (h - 1))].d[0][j]);
}
d[h].emplace_back(sparse_table<S, op, e>(v));
}
}
}
S prod(int xl, int xr, int yl, int yr) const {
assert(xl >= 0 and xr <= H and yl >= 0 and yr <= W);
if (xl >= xr) return e();
int h = lgx_table[xr - xl];
return op(d[h][xl].prod(yl, yr), d[h][xr - (1 << h)].prod(yl, yr));
}
};
#line 2 "sparse_table/sparse_table.hpp"
#include <cassert>
#include <vector>
// CUT begin
// Static sequence sparse table
// Complexity: O(NlogN) for precalculation, O(1) per query
template <class S, S (*op)(S, S), S (*e)()> struct sparse_table {
int N, lgN;
std::vector<std::vector<S>> d;
std::vector<int> lgx_table;
sparse_table() {}
sparse_table(const std::vector<S> &sequence) : N(sequence.size()) {
lgx_table.resize(N + 1);
for (int i = 2; i < N + 1; ++i) lgx_table[i] = lgx_table[i >> 1] + 1;
lgN = lgx_table[N] + 1;
d.assign(lgN, std::vector<S>(N, e()));
d[0] = sequence;
for (int h = 1; h < lgN; ++h) {
for (int i = 0; i + (1 << h) <= N; ++i) {
d[h][i] = op(d[h - 1][i], d[h - 1][i + (1 << (h - 1))]);
}
}
}
S prod(int l, int r) const { // [l, r), 0-indexed
assert(l >= 0 and r <= N);
if (l >= r) return e();
int h = lgx_table[r - l];
return op(d[h][l], d[h][r - (1 << h)]);
}
};
#line 5 "sparse_table/sparse_table_2d.hpp"
// CUT begin
// Static matrix sparse table
// Complexity; O(HWlogHlogW) for precalculation, O(1) per query
template <class S, S (*op)(S, S), S (*e)()> struct SparseTable2D {
int H, lgH, W;
std::vector<std::vector<sparse_table<S, op, e>>> d;
std::vector<int> lgx_table;
SparseTable2D() {}
SparseTable2D(const std::vector<std::vector<S>> &matrix) {
H = matrix.size(), W = (matrix.size() ? matrix[0].size() : 0);
lgx_table.resize(H + 1);
for (int i = 2; i < H + 1; i++) lgx_table[i] = lgx_table[i >> 1] + 1;
lgH = lgx_table[H] + 1;
d.resize(lgH);
for (auto v : matrix) d[0].emplace_back(sparse_table<S, op, e>(v));
for (int h = 1; h < lgH; h++) {
for (int i = 0; i + (1 << h) <= H; ++i) {
std::vector<S> v(W);
for (int j = 0; j < W; ++j) {
v[j] = op(d[h - 1][i].d[0][j], d[h - 1][i + (1 << (h - 1))].d[0][j]);
}
d[h].emplace_back(sparse_table<S, op, e>(v));
}
}
}
S prod(int xl, int xr, int yl, int yr) const {
assert(xl >= 0 and xr <= H and yl >= 0 and yr <= W);
if (xl >= xr) return e();
int h = lgx_table[xr - xl];
return op(d[h][xl].prod(yl, yr), d[h][xr - (1 << h)].prod(yl, yr));
}
};