This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://atcoder.jp/contests/arc105/tasks/arc105_f"
#include "../../modint.hpp"
#include "../subset_convolution.hpp"
#include <iostream>
using namespace std;
using mint = ModInt<998244353>;
// https://codeforces.com/blog/entry/83535?#comment-709269
int main() {
int N, M;
cin >> N >> M;
vector<int> to(N);
while (M--) {
int a, b;
cin >> a >> b;
a--, b--;
to[a] += 1 << b, to[b] += 1 << a;
}
const mint inv2 = mint(2).inv();
vector<mint> pow2(N * N + 1, 1), pow2inv(N * N + 1, 1);
for (int i = 1; i <= N * N; i++) pow2[i] = pow2[i - 1] * 2, pow2inv[i] = pow2inv[i - 1] * inv2;
vector<int> nbe(1 << N);
vector<mint> f(1 << N);
for (int s = 0; s < 1 << N; s++) {
for (int i = 0; i < N; i++) nbe[s] += __builtin_popcount(to[i] & s) * ((s >> i) & 1);
nbe[s] /= 2;
f[s] = pow2inv[nbe[s]];
}
f = subset_convolution(f, f);
for (int s = 0; s < 1 << N; s++) f[s] *= pow2[nbe[s]];
subset_log(f);
cout << f.back() / 2 << '\n';
}
#line 1 "set_power_series/test/subset_log.test.cpp"
#define PROBLEM "https://atcoder.jp/contests/arc105/tasks/arc105_f"
#line 2 "modint.hpp"
#include <cassert>
#include <iostream>
#include <set>
#include <vector>
template <int md> struct ModInt {
using lint = long long;
constexpr static int mod() { return md; }
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = md - 1;
for (lint i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < md; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((md - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
int val_;
int val() const noexcept { return val_; }
constexpr ModInt() : val_(0) {}
constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
constexpr ModInt(lint v) { _setval(v % md + md); }
constexpr explicit operator bool() const { return val_ != 0; }
constexpr ModInt operator+(const ModInt &x) const {
return ModInt()._setval((lint)val_ + x.val_);
}
constexpr ModInt operator-(const ModInt &x) const {
return ModInt()._setval((lint)val_ - x.val_ + md);
}
constexpr ModInt operator*(const ModInt &x) const {
return ModInt()._setval((lint)val_ * x.val_ % md);
}
constexpr ModInt operator/(const ModInt &x) const {
return ModInt()._setval((lint)val_ * x.inv().val() % md);
}
constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; }
friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; }
friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; }
friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; }
constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
constexpr bool operator<(const ModInt &x) const {
return val_ < x.val_;
} // To use std::map<ModInt, T>
friend std::istream &operator>>(std::istream &is, ModInt &x) {
lint t;
return is >> t, x = ModInt(t), is;
}
constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
return os << x.val_;
}
constexpr ModInt pow(lint n) const {
ModInt ans = 1, tmp = *this;
while (n) {
if (n & 1) ans *= tmp;
tmp *= tmp, n >>= 1;
}
return ans;
}
static constexpr int cache_limit = std::min(md, 1 << 21);
static std::vector<ModInt> facs, facinvs, invs;
constexpr static void _precalculation(int N) {
const int l0 = facs.size();
if (N > md) N = md;
if (N <= l0) return;
facs.resize(N), facinvs.resize(N), invs.resize(N);
for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
facinvs[N - 1] = facs.back().pow(md - 2);
for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
}
constexpr ModInt inv() const {
if (this->val_ < cache_limit) {
if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return invs[this->val_];
} else {
return this->pow(md - 2);
}
}
constexpr ModInt fac() const {
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return facs[this->val_];
}
constexpr ModInt facinv() const {
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return facinvs[this->val_];
}
constexpr ModInt doublefac() const {
lint k = (this->val_ + 1) / 2;
return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
: ModInt(k).fac() * ModInt(2).pow(k);
}
constexpr ModInt nCr(int r) const {
if (r < 0 or this->val_ < r) return ModInt(0);
return this->fac() * (*this - r).facinv() * ModInt(r).facinv();
}
constexpr ModInt nPr(int r) const {
if (r < 0 or this->val_ < r) return ModInt(0);
return this->fac() * (*this - r).facinv();
}
static ModInt binom(int n, int r) {
static long long bruteforce_times = 0;
if (r < 0 or n < r) return ModInt(0);
if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r);
r = std::min(r, n - r);
ModInt ret = ModInt(r).facinv();
for (int i = 0; i < r; ++i) ret *= n - i;
bruteforce_times += r;
return ret;
}
// Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
// Complexity: O(sum(ks))
template <class Vec> static ModInt multinomial(const Vec &ks) {
ModInt ret{1};
int sum = 0;
for (int k : ks) {
assert(k >= 0);
ret *= ModInt(k).facinv(), sum += k;
}
return ret * ModInt(sum).fac();
}
// Catalan number, C_n = binom(2n, n) / (n + 1)
// C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
// https://oeis.org/A000108
// Complexity: O(n)
static ModInt catalan(int n) {
if (n < 0) return ModInt(0);
return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv();
}
ModInt sqrt() const {
if (val_ == 0) return 0;
if (md == 2) return val_;
if (pow((md - 1) / 2) != 1) return 0;
ModInt b = 1;
while (b.pow((md - 1) / 2) == 1) b += 1;
int e = 0, m = md - 1;
while (m % 2 == 0) m >>= 1, e++;
ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
x *= (*this);
ModInt z = b.pow(m);
while (y != 1) {
int j = 0;
ModInt t = y;
while (t != 1) j++, t *= t;
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return ModInt(std::min(x.val_, md - x.val_));
}
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};
using ModInt998244353 = ModInt<998244353>;
// using mint = ModInt<998244353>;
// using mint = ModInt<1000000007>;
#line 2 "set_power_series/subset_convolution.hpp"
#include <algorithm>
#line 5 "set_power_series/subset_convolution.hpp"
// CUT begin
// Subset sum (fast zeta transform)
// Complexity: O(N 2^N) for array of size 2^N
template <typename T> void subset_sum(std::vector<T> &f) {
const int sz = f.size(), n = __builtin_ctz(sz);
assert(__builtin_popcount(sz) == 1);
for (int d = 0; d < n; d++) {
for (int S = 0; S < 1 << n; S++)
if (S & (1 << d)) f[S] += f[S ^ (1 << d)];
}
}
// Inverse of subset sum (fast moebius transform)
// Complexity: O(N 2^N) for array of size 2^N
template <typename T> void subset_sum_inv(std::vector<T> &g) {
const int sz = g.size(), n = __builtin_ctz(sz);
assert(__builtin_popcount(sz) == 1);
for (int d = 0; d < n; d++) {
for (int S = 0; S < 1 << n; S++)
if (S & (1 << d)) g[S] -= g[S ^ (1 << d)];
}
}
// Superset sum / its inverse (fast zeta/moebius transform)
// Complexity: O(N 2^N) for array of size 2^N
template <typename T> void superset_sum(std::vector<T> &f) {
const int sz = f.size(), n = __builtin_ctz(sz);
assert(__builtin_popcount(sz) == 1);
for (int d = 0; d < n; d++) {
for (int S = 0; S < 1 << n; S++)
if (!(S & (1 << d))) f[S] += f[S | (1 << d)];
}
}
template <typename T> void superset_sum_inv(std::vector<T> &g) {
const int sz = g.size(), n = __builtin_ctz(sz);
assert(__builtin_popcount(sz) == 1);
for (int d = 0; d < n; d++) {
for (int S = 0; S < 1 << n; S++)
if (!(S & (1 << d))) g[S] -= g[S | (1 << d)];
}
}
template <typename T> std::vector<std::vector<T>> build_zeta_(int D, const std::vector<T> &f) {
int n = f.size();
std::vector<std::vector<T>> ret(D, std::vector<T>(n));
for (int i = 0; i < n; i++) ret[__builtin_popcount(i)][i] += f[i];
for (auto &vec : ret) subset_sum(vec);
return ret;
}
template <typename T>
std::vector<T> get_moebius_of_prod_(const std::vector<std::vector<T>> &mat1,
const std::vector<std::vector<T>> &mat2) {
int D = mat1.size(), n = mat1[0].size();
std::vector<std::vector<int>> pc2i(D);
for (int i = 0; i < n; i++) pc2i[__builtin_popcount(i)].push_back(i);
std::vector<T> tmp, ret(mat1[0].size());
for (int d = 0; d < D; d++) {
tmp.assign(mat1[d].size(), 0);
for (int e = 0; e <= d; e++) {
for (int i = 0; i < int(tmp.size()); i++) tmp[i] += mat1[e][i] * mat2[d - e][i];
}
subset_sum_inv(tmp);
for (auto i : pc2i[d]) ret[i] = tmp[i];
}
return ret;
};
// Subset convolution
// h[S] = \sum_T f[T] * g[S - T]
// Complexity: O(N^2 2^N) for arrays of size 2^N
template <typename T> std::vector<T> subset_convolution(std::vector<T> f, std::vector<T> g) {
const int sz = f.size(), m = __builtin_ctz(sz) + 1;
assert(__builtin_popcount(sz) == 1 and f.size() == g.size());
auto ff = build_zeta_(m, f), fg = build_zeta_(m, g);
return get_moebius_of_prod_(ff, fg);
}
// https://hos-lyric.hatenablog.com/entry/2021/01/14/201231
template <class T, class Function> void subset_func(std::vector<T> &f, const Function &func) {
const int sz = f.size(), m = __builtin_ctz(sz) + 1;
assert(__builtin_popcount(sz) == 1);
auto ff = build_zeta_(m, f);
std::vector<T> p(m);
for (int i = 0; i < sz; i++) {
for (int d = 0; d < m; d++) p[d] = ff[d][i];
func(p);
for (int d = 0; d < m; d++) ff[d][i] = p[d];
}
for (auto &vec : ff) subset_sum_inv(vec);
for (int i = 0; i < sz; i++) f[i] = ff[__builtin_popcount(i)][i];
}
// log(f(x)) for f(x), f(0) == 1
// Requires inv()
template <class T> void poly_log(std::vector<T> &f) {
assert(f.at(0) == T(1));
static std::vector<T> invs{0};
const int m = f.size();
std::vector<T> finv(m);
for (int d = 0; d < m; d++) {
finv[d] = (d == 0);
if (int(invs.size()) <= d) invs.push_back(T(d).inv());
for (int e = 0; e < d; e++) finv[d] -= finv[e] * f[d - e];
}
std::vector<T> ret(m);
for (int d = 1; d < m; d++) {
for (int e = 0; d + e < m; e++) ret[d + e] += f[d] * d * finv[e] * invs[d + e];
}
f = ret;
}
// log(f(S)) for set function f(S), f(0) == 1
// Requires inv()
// Complexity: O(n^2 2^n)
// https://atcoder.jp/contests/abc213/tasks/abc213_g
template <class T> void subset_log(std::vector<T> &f) { subset_func(f, poly_log<T>); }
// exp(f(S)) for set function f(S), f(0) == 0
// Complexity: O(n^2 2^n)
// https://codeforces.com/blog/entry/92183
template <class T> void subset_exp(std::vector<T> &f) {
const int sz = f.size(), m = __builtin_ctz(sz);
assert(sz == 1 << m);
assert(f.at(0) == 0);
std::vector<T> ret{T(1)};
ret.reserve(sz);
for (int d = 0; d < m; d++) {
auto c = subset_convolution({f.begin() + (1 << d), f.begin() + (1 << (d + 1))}, ret);
ret.insert(ret.end(), c.begin(), c.end());
}
f = ret;
}
// sqrt(f(x)), f(x) == 1
// Requires inv of 2
// Compelxity: O(n^2)
template <class T> void poly_sqrt(std::vector<T> &f) {
assert(f.at(0) == T(1));
const int m = f.size();
static const auto inv2 = T(2).inv();
for (int d = 1; d < m; d++) {
if (~(d & 1)) f[d] -= f[d / 2] * f[d / 2];
f[d] *= inv2;
for (int e = 1; e < d - e; e++) f[d] -= f[e] * f[d - e];
}
}
// sqrt(f(S)) for set function f(S), f(0) == 1
// Requires inv()
// https://atcoder.jp/contests/xmascon20/tasks/xmascon20_h
template <class T> void subset_sqrt(std::vector<T> &f) { subset_func(f, poly_sqrt<T>); }
// exp(f(S)) for set function f(S), f(0) == 0
template <class T> void poly_exp(std::vector<T> &P) {
const int m = P.size();
assert(m and P[0] == 0);
std::vector<T> Q(m), logQ(m), Qinv(m);
Q[0] = Qinv[0] = T(1);
static std::vector<T> invs{0};
auto set_invlog = [&](int d) {
Qinv[d] = 0;
for (int e = 0; e < d; e++) Qinv[d] -= Qinv[e] * Q[d - e];
while (d >= int(invs.size())) {
int sz = invs.size();
invs.push_back(T(sz).inv());
}
logQ[d] = 0;
for (int e = 1; e <= d; e++) logQ[d] += Q[e] * e * Qinv[d - e];
logQ[d] *= invs[d];
};
for (int d = 1; d < m; d++) {
Q[d] += P[d] - logQ[d];
set_invlog(d);
assert(logQ[d] == P[d]);
if (d + 1 < m) set_invlog(d + 1);
}
P = Q;
}
// f(S)^k for set function f(S)
// Requires inv()
template <class T> void subset_pow(std::vector<T> &f, long long k) {
auto poly_pow = [&](std::vector<T> &f) {
const int m = f.size();
if (k == 0) f[0] = 1, std::fill(f.begin() + 1, f.end(), T(0));
if (k <= 1) return;
int nzero = 0;
while (nzero < int(f.size()) and f[nzero] == T(0)) nzero++;
int rem = std::max<long long>((long long)f.size() - nzero * k, 0LL);
if (rem == 0) {
std::fill(f.begin(), f.end(), 0);
return;
}
f.erase(f.begin(), f.begin() + nzero);
f.resize(rem);
const T f0 = f.at(0), f0inv = f0.inv(), f0pow = f0.pow(k);
for (auto &x : f) x *= f0inv;
poly_log(f);
for (auto &x : f) x *= k;
poly_exp(f);
for (auto &x : f) x *= f0pow;
f.resize(rem, 0);
f.insert(f.begin(), m - int(f.size()), T(0));
};
subset_func(f, poly_pow);
}
#line 5 "set_power_series/test/subset_log.test.cpp"
using namespace std;
using mint = ModInt<998244353>;
// https://codeforces.com/blog/entry/83535?#comment-709269
int main() {
int N, M;
cin >> N >> M;
vector<int> to(N);
while (M--) {
int a, b;
cin >> a >> b;
a--, b--;
to[a] += 1 << b, to[b] += 1 << a;
}
const mint inv2 = mint(2).inv();
vector<mint> pow2(N * N + 1, 1), pow2inv(N * N + 1, 1);
for (int i = 1; i <= N * N; i++) pow2[i] = pow2[i - 1] * 2, pow2inv[i] = pow2inv[i - 1] * inv2;
vector<int> nbe(1 << N);
vector<mint> f(1 << N);
for (int s = 0; s < 1 << N; s++) {
for (int i = 0; i < N; i++) nbe[s] += __builtin_popcount(to[i] & s) * ((s >> i) & 1);
nbe[s] /= 2;
f[s] = pow2inv[nbe[s]];
}
f = subset_convolution(f, f);
for (int s = 0; s < 1 << N; s++) f[s] *= pow2[nbe[s]];
subset_log(f);
cout << f.back() / 2 << '\n';
}