cplib-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub hitonanode/cplib-cpp

:heavy_check_mark: other_algorithms/test/slope_trick_stress.test.cpp

Depends on

Code

#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A" // DUMMY
#include "../slope_trick.hpp"
#include <cstdio>
#include <random>
#include <tuple>
#include <utility>
using namespace std;

mt19937 mt(1010101);

template <typename Int> pair<slope_trick<Int>, vector<Int>> gen_random_function(Int lo, Int hi) {
    slope_trick<Int> f;
    const Int dxmax = 10;

    int nquery = 100;

    const Int stupid_lo = lo - nquery * dxmax, stupid_hi = hi + nquery * dxmax;
    std::vector<Int> stupid_f(stupid_hi - stupid_lo + 1);

    for (int t = 0; t < nquery; t++) {
        int qtype = uniform_int_distribution<int>(0, 6)(mt);
        Int a = uniform_int_distribution<Int>(lo, hi)(mt);
        Int w = uniform_int_distribution<Int>(0, dxmax)(mt);
        if (qtype == 0) {
            Int b = uniform_int_distribution<Int>(-10000, 10000)(mt);
            f.add_const(b);
            for (Int x = stupid_lo; x <= stupid_hi; x++) stupid_f[x - stupid_lo] += b;
        }
        if (qtype == 1) {
            f.add_relu(a);
            for (Int x = stupid_lo; x <= stupid_hi; x++)
                stupid_f[x - stupid_lo] += max<Int>(x - a, 0);
        }
        if (qtype == 2) {
            f.add_irelu(a);
            for (Int x = stupid_lo; x <= stupid_hi; x++)
                stupid_f[x - stupid_lo] += max<Int>(a - x, 0);
        }
        if (qtype == 3) {
            f.add_abs(a);
            for (Int x = stupid_lo; x <= stupid_hi; x++) stupid_f[x - stupid_lo] += abs(x - a);
        }
        if (qtype == 4) {
            f.move_left_curve(w);
            for (Int x = stupid_lo; x <= stupid_hi; x++) {
                for (Int y = x + 1; y <= min(stupid_hi, x + w); y++) {
                    stupid_f[x - stupid_lo] = min(stupid_f[x - stupid_lo], stupid_f[y - stupid_lo]);
                }
            }
        }
        if (qtype == 5) {
            f.move_right_curve(w);
            for (Int x = stupid_hi; x >= stupid_lo; x--) {
                for (Int y = x - 1; y >= max(stupid_lo, x - w); y--) {
                    stupid_f[x - stupid_lo] = min(stupid_f[x - stupid_lo], stupid_f[y - stupid_lo]);
                }
            }
        }
        if (qtype == 6) {
            Int dx = uniform_int_distribution<Int>(-dxmax, dxmax)(mt);
            f.translate(dx);
            auto g = stupid_f;
            for (Int x = stupid_lo; x <= stupid_hi; x++) {
                Int y = x - dx;
                if (y >= stupid_lo and y <= stupid_hi) g[x - stupid_lo] = stupid_f[y - stupid_lo];
            }
            stupid_f = g;
        }
    }
    vector<Int> fvals;
    for (Int x = lo; x <= hi; x++) {
        Int ret1 = stupid_f[x - stupid_lo];
        auto g = f;
        Int ret2 = g.get_destructive(x);
        fvals.push_back(ret2);
        assert(ret1 == ret2);
    }
    return {f, fvals};
}

template <typename Int> void merge_verify() {
    const Int lo = uniform_int_distribution<Int>(-10000, 10000)(mt);
    const Int hi = lo + 1000;
    slope_trick<Int> f, g;
    vector<Int> fval, gval;
    tie(f, fval) = gen_random_function(lo, hi);
    tie(g, gval) = gen_random_function(lo, hi);
    f.merge_destructive(g);
    for (Int x = lo; x <= hi; x++) {
        auto tmp = f;
        assert(tmp.get_destructive(x) == fval.at(x - lo) + gval.at(x - lo));
    }
}

int main() {
    for (int t = 0; t < 1000; t++) {
        merge_verify<int>();
        merge_verify<long long>();
    }
    puts("Hello World");
}
#line 1 "other_algorithms/test/slope_trick_stress.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A" // DUMMY
#line 2 "other_algorithms/slope_trick.hpp"
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <utility>

// Slope trick: fast operations for convex piecewise-linear functions
// Implementation idea:
// - https://maspypy.com/slope-trick-1-%E8%A7%A3%E8%AA%AC%E7%B7%A8
// - https://ei1333.github.io/library/structure/others/slope-trick.cpp
template <class T, T INF = std::numeric_limits<T>::max() / 2> class slope_trick {
    T min_f;
    T displacement_l, displacement_r;
    std::priority_queue<T, std::vector<T>, std::less<T>> L;
    std::priority_queue<T, std::vector<T>, std::greater<T>> R;
    void pushR(const T &a) { R.push(a - displacement_r); }
    T topR() const { return R.empty() ? INF : R.top() + displacement_r; }
    T popR() {
        auto ret = topR();
        if (R.size()) R.pop();
        return ret;
    }
    void pushL(const T &a) { L.push(a + displacement_l); }
    T topL() const { return L.empty() ? -INF : L.top() - displacement_l; }
    T popL() {
        auto ret = topL();
        if (L.size()) L.pop();
        return ret;
    }

public:
    // Initialize, f(x) = 0 everywhere
    // Complexity: O(1)
    slope_trick() : min_f(0), displacement_l(0), displacement_r(0) {
        static_assert(INF > 0, "INF must be greater than 0");
    }
    inline int sizeL() const noexcept { return L.size(); }
    inline int sizeR() const noexcept { return R.size(); }

    // argmin f(x), min f(x)
    // Complexity: O(1)
    using Q = struct {
        T min, lo, hi;
    };
    Q get_min() const { return {min_f, topL(), topR()}; }

    // f(x) += b
    // Complexity: O(1)
    slope_trick &add_const(const T &b) { return min_f += b, *this; }

    // f(x) += max(x - a, 0)  _/
    // Complexity: O(log n)
    slope_trick &add_relu(const T &a) {
        return min_f += std::max(T(0), topL() - a), pushL(a), pushR(popL()), *this;
    }

    // f(x) += max(a - x, 0)  \_
    // Complexity: O(log n)
    slope_trick &add_irelu(const T &a) {
        return min_f += std::max(T(0), a - topR()), pushR(a), pushL(popR()), *this;
    }

    // f(x) += |x - a|  \/
    // Complexity: O(log n)
    slope_trick &add_abs(const T &a) { return add_relu(a).add_irelu(a); }

    // f(x) <- min_{0 <= y <= w} f(x + y)  .\ -> \_
    // Complexity: O(1)
    slope_trick &move_left_curve(const T &w) { return assert(w >= 0), displacement_l += w, *this; }

    // f(x) <- min_{0 <= y <= w} f(x - y)  /. -> _/
    // Complexity: O(1)
    slope_trick &move_right_curve(const T &w) {
        return assert(w >= 0), displacement_r += w, *this;
    }

    // f(x) <- f(x - dx) \/. -> .\/
    // Complexity: O(1)
    slope_trick &translate(const T &dx) {
        return displacement_l -= dx, displacement_r += dx, *this;
    }

    // return f(x), f destructive
    T get_destructive(const T &x) {
        T ret = get_min().min;
        while (L.size()) ret += std::max(T(0), popL() - x);
        while (R.size()) ret += std::max(T(0), x - popR());
        return ret;
    }

    // f(x) += g(x), g destructive
    slope_trick &merge_destructive(slope_trick<T, INF> &g) {
        if (sizeL() + sizeR() > g.sizeL() + g.sizeR()) {
            std::swap(min_f, g.min_f);
            std::swap(displacement_l, g.displacement_l);
            std::swap(displacement_r, g.displacement_r);
            std::swap(L, g.L);
            std::swap(R, g.R);
        }
        min_f += g.get_min().min;
        while (g.L.size()) add_irelu(g.popL());
        while (g.R.size()) add_relu(g.popR());
        return *this;
    }
};
#line 3 "other_algorithms/test/slope_trick_stress.test.cpp"
#include <cstdio>
#include <random>
#include <tuple>
#line 7 "other_algorithms/test/slope_trick_stress.test.cpp"
using namespace std;

mt19937 mt(1010101);

template <typename Int> pair<slope_trick<Int>, vector<Int>> gen_random_function(Int lo, Int hi) {
    slope_trick<Int> f;
    const Int dxmax = 10;

    int nquery = 100;

    const Int stupid_lo = lo - nquery * dxmax, stupid_hi = hi + nquery * dxmax;
    std::vector<Int> stupid_f(stupid_hi - stupid_lo + 1);

    for (int t = 0; t < nquery; t++) {
        int qtype = uniform_int_distribution<int>(0, 6)(mt);
        Int a = uniform_int_distribution<Int>(lo, hi)(mt);
        Int w = uniform_int_distribution<Int>(0, dxmax)(mt);
        if (qtype == 0) {
            Int b = uniform_int_distribution<Int>(-10000, 10000)(mt);
            f.add_const(b);
            for (Int x = stupid_lo; x <= stupid_hi; x++) stupid_f[x - stupid_lo] += b;
        }
        if (qtype == 1) {
            f.add_relu(a);
            for (Int x = stupid_lo; x <= stupid_hi; x++)
                stupid_f[x - stupid_lo] += max<Int>(x - a, 0);
        }
        if (qtype == 2) {
            f.add_irelu(a);
            for (Int x = stupid_lo; x <= stupid_hi; x++)
                stupid_f[x - stupid_lo] += max<Int>(a - x, 0);
        }
        if (qtype == 3) {
            f.add_abs(a);
            for (Int x = stupid_lo; x <= stupid_hi; x++) stupid_f[x - stupid_lo] += abs(x - a);
        }
        if (qtype == 4) {
            f.move_left_curve(w);
            for (Int x = stupid_lo; x <= stupid_hi; x++) {
                for (Int y = x + 1; y <= min(stupid_hi, x + w); y++) {
                    stupid_f[x - stupid_lo] = min(stupid_f[x - stupid_lo], stupid_f[y - stupid_lo]);
                }
            }
        }
        if (qtype == 5) {
            f.move_right_curve(w);
            for (Int x = stupid_hi; x >= stupid_lo; x--) {
                for (Int y = x - 1; y >= max(stupid_lo, x - w); y--) {
                    stupid_f[x - stupid_lo] = min(stupid_f[x - stupid_lo], stupid_f[y - stupid_lo]);
                }
            }
        }
        if (qtype == 6) {
            Int dx = uniform_int_distribution<Int>(-dxmax, dxmax)(mt);
            f.translate(dx);
            auto g = stupid_f;
            for (Int x = stupid_lo; x <= stupid_hi; x++) {
                Int y = x - dx;
                if (y >= stupid_lo and y <= stupid_hi) g[x - stupid_lo] = stupid_f[y - stupid_lo];
            }
            stupid_f = g;
        }
    }
    vector<Int> fvals;
    for (Int x = lo; x <= hi; x++) {
        Int ret1 = stupid_f[x - stupid_lo];
        auto g = f;
        Int ret2 = g.get_destructive(x);
        fvals.push_back(ret2);
        assert(ret1 == ret2);
    }
    return {f, fvals};
}

template <typename Int> void merge_verify() {
    const Int lo = uniform_int_distribution<Int>(-10000, 10000)(mt);
    const Int hi = lo + 1000;
    slope_trick<Int> f, g;
    vector<Int> fval, gval;
    tie(f, fval) = gen_random_function(lo, hi);
    tie(g, gval) = gen_random_function(lo, hi);
    f.merge_destructive(g);
    for (Int x = lo; x <= hi; x++) {
        auto tmp = f;
        assert(tmp.get_destructive(x) == fval.at(x - lo) + gval.at(x - lo));
    }
}

int main() {
    for (int t = 0; t < 1000; t++) {
        merge_verify<int>();
        merge_verify<long long>();
    }
    puts("Hello World");
}
Back to top page