This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/min_plus_convolution_convex_arbitrary"
#include "../smawk.hpp"
#include <iostream>
#include <vector>
using namespace std;
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int N, M;
cin >> N >> M;
vector<int> A(N), B(M);
for (auto &a : A) cin >> a, a = -a;
for (auto &b : B) cin >> b, b = -b;
auto ret = concave_max_plus_convolution<int, ((1 << 30) - 1) * 2>(B, A);
for (int i = 0; i < N + M - 1; ++i) cout << -ret[i] << " \n"[i + 1 == N + M - 1];
}
#line 1 "other_algorithms/test/concave_max_plus_convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/min_plus_convolution_convex_arbitrary"
#line 2 "other_algorithms/smawk.hpp"
#include <cassert>
#include <functional>
#include <numeric>
#include <unordered_map>
#include <utility>
#include <vector>
// SMAWK: finding minima of totally monotone function f(i, j) (0 <= i < N, 0 <= j < M) for each i
// Constraints: every submatrix of f(i, j) is monotone.
// Complexity: O(N + M)
// Option: `Memorization`: Memorize all query results using hashmaps, effective when each query
// requires heavy complexity Rererence:
// https://topcoder-g-hatena-ne-jp.jag-icpc.org/spaghetti_source/20120923/1348327542.html
// http://web.cs.unlv.edu/larmore/Courses/CSC477/monge.pdf
// Verify: https://codeforces.com/contest/1423/submission/98368491
template <typename T, bool Memorization> struct SMAWK {
std::vector<std::pair<int, T>> minima;
std::function<T(int, int)> oracle;
std::vector<std::unordered_map<int, T>> memo;
T _query(int i, int j) {
if (Memorization)
return memo[i].count(j) ? memo[i][j] : (memo[i][j] = oracle(i, j));
else
return oracle(i, j);
}
void _smawk_rec(const std::vector<int> &js, int ib, int ie, int id) {
if (ib > ie) return;
std::vector<int> js2;
int i = ib;
for (auto j : js) {
while (!js2.empty() and _query(i, js2.back()) >= _query(i, j)) js2.pop_back(), i -= id;
if (int(js2.size()) != (ie - ib) / id) js2.push_back(j), i += id;
}
_smawk_rec(js2, ib + id, ie, id * 2);
for (int i = ib, q = 0; i <= ie; i += id * 2) {
int jt = (i + id <= ie ? minima[i + id].first : js.back());
T fm = 0;
bool init = true;
for (; q < int(js.size()); ++q) {
T fq = _query(i, js[q]);
if (init or fm > fq) fm = fq, minima[i] = std::make_pair(js[q], fq);
init = false;
if (js[q] == jt) break;
}
}
}
SMAWK(int N, int M, std::function<T(int i, int j)> oracle_) : minima(N), oracle(oracle_) {
if (Memorization) memo.resize(N);
std::vector<int> js(M);
std::iota(js.begin(), js.end(), 0);
_smawk_rec(js, 0, N - 1, 1);
}
};
// Concave max-plus convolution
// b must be concave
// Complexity: O(n + m)
// Verify: https://www.codechef.com/problems/MAXPREFFLIP
template <class S, S INF>
std::vector<S> concave_max_plus_convolution(const std::vector<S> &a, const std::vector<S> &b) {
const int n = a.size(), m = b.size();
auto is_concave = [&](const std::vector<S> &u) -> bool {
for (int i = 1; i + 1 < int(u.size()); ++i) {
if (u[i - 1] + u[i + 1] > u[i] + u[i]) return false;
}
return true;
};
bool a_concave = is_concave(a), b_concave = is_concave(b);
assert(a_concave or b_concave);
if (!b_concave) return concave_max_plus_convolution<S, INF>(b, a);
auto select = [&](int i, int j) -> S {
int aidx = j, bidx = i - j;
if (bidx < 0 or bidx >= m or aidx >= n) return INF;
return -(a[aidx] + b[bidx]);
};
SMAWK<S, false> sm(n + m - 1, n, select);
std::vector<S> ret;
for (auto x : sm.minima) ret.push_back(-x.second);
return ret;
}
#line 4 "other_algorithms/test/concave_max_plus_convolution.test.cpp"
#include <iostream>
#line 7 "other_algorithms/test/concave_max_plus_convolution.test.cpp"
using namespace std;
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int N, M;
cin >> N >> M;
vector<int> A(N), B(M);
for (auto &a : A) cin >> a, a = -a;
for (auto &b : B) cin >> b, b = -b;
auto ret = concave_max_plus_convolution<int, ((1 << 30) - 1) * 2>(B, A);
for (int i = 0; i < N + M - 1; ++i) cout << -ret[i] << " \n"[i + 1 == N + M - 1];
}