This documentation is automatically generated by online-judge-tools/verification-helper
#include "../factorize.hpp"
#include <iostream>
#define PROBLEM "https://judge.yosupo.jp/problem/factorize"
int main() {
int Q;
std::cin >> Q;
while (Q--) {
long long a;
std::cin >> a;
auto ret = FactorizeLonglong(a);
std::cout << ret.size();
for (auto p : ret) std::cout << ' ' << p;
std::cout << '\n';
}
}
#line 2 "random/xorshift.hpp"
#include <cstdint>
// CUT begin
uint32_t rand_int() // XorShift random integer generator
{
static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
uint32_t t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }
#line 3 "number/factorize.hpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <numeric>
#include <vector>
namespace SPRP {
// http://miller-rabin.appspot.com/
const std::vector<std::vector<__int128>> bases{
{126401071349994536}, // < 291831
{336781006125, 9639812373923155}, // < 1050535501 (1e9)
{2, 2570940, 211991001, 3749873356}, // < 47636622961201 (4e13)
{2, 325, 9375, 28178, 450775, 9780504, 1795265022} // <= 2^64
};
inline int get_id(long long n) {
if (n < 291831) {
return 0;
} else if (n < 1050535501) {
return 1;
} else if (n < 47636622961201)
return 2;
else { return 3; }
}
} // namespace SPRP
// Miller-Rabin primality test
// https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%A9%E3%83%BC%E2%80%93%E3%83%A9%E3%83%93%E3%83%B3%E7%B4%A0%E6%95%B0%E5%88%A4%E5%AE%9A%E6%B3%95
// Complexity: O(lg n) per query
struct {
long long modpow(__int128 x, __int128 n, long long mod) noexcept {
__int128 ret = 1;
for (x %= mod; n; x = x * x % mod, n >>= 1) ret = (n & 1) ? ret * x % mod : ret;
return ret;
}
bool operator()(long long n) noexcept {
if (n < 2) return false;
if (n % 2 == 0) return n == 2;
int s = __builtin_ctzll(n - 1);
for (__int128 a : SPRP::bases[SPRP::get_id(n)]) {
if (a % n == 0) continue;
a = modpow(a, (n - 1) >> s, n);
bool may_composite = true;
if (a == 1) continue;
for (int r = s; r--; a = a * a % n) {
if (a == n - 1) may_composite = false;
}
if (may_composite) return false;
}
return true;
}
} is_prime;
struct {
// Pollard's rho algorithm: find factor greater than 1
long long find_factor(long long n) {
assert(n > 1);
if (n % 2 == 0) return 2;
if (is_prime(n)) return n;
long long c = 1;
auto f = [&](__int128 x) -> long long { return (x * x + c) % n; };
for (int t = 1;; t++) {
for (c = 0; c == 0 or c + 2 == n;) c = rand_int() % n;
long long x0 = t, m = std::max(n >> 3, 1LL), x, ys, y = x0, r = 1, g, q = 1;
do {
x = y;
for (int i = r; i--;) y = f(y);
long long k = 0;
do {
ys = y;
for (int i = std::min(m, r - k); i--;)
y = f(y), q = __int128(q) * std::abs(x - y) % n;
g = std::__gcd<long long>(q, n);
k += m;
} while (k < r and g <= 1);
r <<= 1;
} while (g <= 1);
if (g == n) {
do {
ys = f(ys);
g = std::__gcd(std::abs(x - ys), n);
} while (g <= 1);
}
if (g != n) return g;
}
}
std::vector<long long> operator()(long long n) {
std::vector<long long> ret;
while (n > 1) {
long long f = find_factor(n);
if (f < n) {
auto tmp = operator()(f);
ret.insert(ret.end(), tmp.begin(), tmp.end());
} else
ret.push_back(n);
n /= f;
}
std::sort(ret.begin(), ret.end());
return ret;
}
long long euler_phi(long long n) {
long long ret = 1, last = -1;
for (auto p : this->operator()(n)) ret *= p - (last != p), last = p;
return ret;
}
} FactorizeLonglong;
#line 2 "number/test/factorize_longlong.test.cpp"
#include <iostream>
#define PROBLEM "https://judge.yosupo.jp/problem/factorize"
int main() {
int Q;
std::cin >> Q;
while (Q--) {
long long a;
std::cin >> a;
auto ret = FactorizeLonglong(a);
std::cout << ret.size();
for (auto p : ret) std::cout << ' ' << p;
std::cout << '\n';
}
}