This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/950"
#include "../discrete_logarithm.hpp"
#include "../../utilities/pow_op.hpp"
#include <array>
#include <iostream>
#include <set>
using namespace std;
using S = array<long long, 4>;
long long P;
S op(S l, S r) {
return S{(((long long)l[0b00] * r[0b00] % P + (long long)l[0b01] * r[0b10] % P) % P),
(((long long)l[0b00] * r[0b01] % P + (long long)l[0b01] * r[0b11] % P) % P),
(((long long)l[0b10] * r[0b00] % P + (long long)l[0b11] * r[0b10] % P) % P),
(((long long)l[0b10] * r[0b01] % P + (long long)l[0b11] * r[0b11] % P) % P)};
};
long long det(S x) { return ((long long)x[0] * x[3] % P - (long long)x[1] * x[2] % P + P) % P; };
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
cin >> P;
S A, B;
for (auto &x : A) cin >> x;
for (auto &x : B) cin >> x;
const long long det_A = det(A), det_B = det(B);
if (!det_A and det_B) {
puts("-1");
return 0;
}
const long long first_det_match = DiscreteLogarithmModNonzero<long long>(det_A, det_B, P);
if (first_det_match < 0) {
puts("-1");
return 0;
}
if (pow_op<S>(A, first_det_match, op) == B) {
cout << first_det_match << '\n';
return 0;
}
const long long det_period = det_A ? DiscreteLogarithmModNonzero<long long>(det_A, 1, P) : 1;
if (det_period < 0) {
puts("-1");
return 0;
}
const S init = pow_op<S>(A, first_det_match, op);
const S x = pow_op<S>(A, det_period, op);
const long long res = DiscreteLogarithm<S, S, set<S>>(x, init, B, op, op, P * 2);
if (res < 0) {
puts("-1");
} else {
cout << first_det_match + res * det_period << '\n';
}
}
#line 1 "number/test/discrete_logarithm_matrix.yuki950.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/950"
#line 2 "number/discrete_logarithm.hpp"
#include <cassert>
#include <cmath>
#include <functional>
#include <unordered_set>
// Solve min_n f^n s = t (0 <= n <= max_search)
// baby = f, giant = f^giant_stride
// If solution is not found, return -1.
// https://maspypy.com/%e3%83%a2%e3%83%8e%e3%82%a4%e3%83%89%e4%bd%9c%e7%94%a8%e3%81%ab%e9%96%a2%e3%81%99%e3%82%8b%e9%9b%a2%e6%95%a3%e5%af%be%e6%95%b0%e5%95%8f%e9%a1%8c
template <class S, class F, class Container>
long long
DiscreteLogarithm(const F &baby, const F &giant, const S &s, const S &t,
const std::function<S(F, S)> &mapping, long long max_search, int giant_stride) {
if (s == t) return 0;
if (max_search <= 0) return -1;
Container ys;
// ys.reserve(giant_stride); // if unordered_set
{
auto yt = t;
for (int i = 0; i < giant_stride; ++i) {
ys.emplace(yt);
yt = mapping(baby, yt);
}
}
int num_fails = 0;
S cur = s;
for (long long k = 1;; ++k) {
if (const S nxt = mapping(giant, cur); ys.count(nxt)) {
for (int i = 1; i <= giant_stride; ++i) {
cur = mapping(baby, cur);
if (cur == t) {
long long ret = (k - 1) * giant_stride + i;
return (ret <= max_search) ? ret : -1;
}
}
++num_fails;
} else {
cur = nxt;
}
if (num_fails >= 2 or k * giant_stride > max_search) return -1;
}
}
// Solve min_n f^n s = t (0 <= n <= max_search) f \in F, s \in S, t \in S
// mapping: (F, S) -> S
// composition: (F, F) -> F
template <class S, class F, class Container>
long long
DiscreteLogarithm(const F &f, const S &s, const S &t, const std::function<S(F, S)> &mapping,
const std::function<F(F, F)> &composition, long long max_search) {
const int giant_stride = ceil(sqrtl(max_search));
F giant = f, tmp = f;
for (int n = giant_stride - 1; n; n >>= 1) {
if (n & 1) giant = composition(giant, tmp);
tmp = composition(tmp, tmp);
}
return DiscreteLogarithm<S, F, Container>(f, giant, s, t, mapping, max_search, giant_stride);
}
// Solve min_n x^n = y (1 <= n <= max_search)
template <class S, class Container>
long long DiscreteLogarithmNonzero(const S &x, const S &y, const std::function<S(S, S)> &op,
long long max_search) {
long long res = DiscreteLogarithm<S, S, Container>(x, x, y, op, op, max_search);
if (res < 0 or res >= max_search) return -1;
return res + 1;
}
// Solve min_n x^n = y mod md (n >= 0) or return -1 if infeasible
template <class Int> Int DiscreteLogarithmMod(Int x, Int y, Int md) {
x %= md, y %= md;
if (x < 0) x += md;
if (y < 0) y += md;
// You may change __int128 to long long, but be careful about overflow.
auto f = [&](Int a, Int b) -> Int { return __int128(a) * b % md; };
return DiscreteLogarithm<Int, Int, std::unordered_set<Int>>(x, Int{1} % md, y, f, f, md);
}
// Solve min_n x^n = y mod md (n >= 1) or return -1 if infeasible
template <class Int> Int DiscreteLogarithmModNonzero(Int x, Int y, Int md) {
x %= md, y %= md;
if (x < 0) x += md;
if (y < 0) y += md;
// You may change __int128 to long long, but be careful about overflow.
auto f = [&](Int a, Int b) -> Int { return __int128(a) * b % md; };
return DiscreteLogarithmNonzero<Int, std::unordered_set<Int>>(x, y, f, md);
}
#line 3 "utilities/pow_op.hpp"
// Calculate x^n
template <class S, class F> S pow_op(S x, long long n, F op) {
assert(n > 0);
S ans = x;
--n;
while (n) {
if (n & 1) ans = op(ans, x);
x = op(x, x);
n >>= 1;
}
return ans;
}
#line 4 "number/test/discrete_logarithm_matrix.yuki950.test.cpp"
#include <array>
#include <iostream>
#include <set>
using namespace std;
using S = array<long long, 4>;
long long P;
S op(S l, S r) {
return S{(((long long)l[0b00] * r[0b00] % P + (long long)l[0b01] * r[0b10] % P) % P),
(((long long)l[0b00] * r[0b01] % P + (long long)l[0b01] * r[0b11] % P) % P),
(((long long)l[0b10] * r[0b00] % P + (long long)l[0b11] * r[0b10] % P) % P),
(((long long)l[0b10] * r[0b01] % P + (long long)l[0b11] * r[0b11] % P) % P)};
};
long long det(S x) { return ((long long)x[0] * x[3] % P - (long long)x[1] * x[2] % P + P) % P; };
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
cin >> P;
S A, B;
for (auto &x : A) cin >> x;
for (auto &x : B) cin >> x;
const long long det_A = det(A), det_B = det(B);
if (!det_A and det_B) {
puts("-1");
return 0;
}
const long long first_det_match = DiscreteLogarithmModNonzero<long long>(det_A, det_B, P);
if (first_det_match < 0) {
puts("-1");
return 0;
}
if (pow_op<S>(A, first_det_match, op) == B) {
cout << first_det_match << '\n';
return 0;
}
const long long det_period = det_A ? DiscreteLogarithmModNonzero<long long>(det_A, 1, P) : 1;
if (det_period < 0) {
puts("-1");
return 0;
}
const S init = pow_op<S>(A, first_det_match, op);
const S x = pow_op<S>(A, det_period, op);
const long long res = DiscreteLogarithm<S, S, set<S>>(x, init, B, op, op, P * 2);
if (res < 0) {
puts("-1");
} else {
cout << first_det_match + res * det_period << '\n';
}
}