This documentation is automatically generated by online-judge-tools/verification-helper
#include "number/sieve.hpp"
線形篩.構築 $O(N)$.自然数 $K \leq N$ の素因数分解は $O(\log K)$.
Sieve sieve(1 << 20); // 2^20 以下の全素数や,各整数の最小素因数を計算.
// 素数判定
bool is_prime = (sieve.min_factor[x] == x);
// 素因数分解
map<lint, int> mp = sieve.factorize(x);
// 約数列挙(昇順とは限らない)
vector<lint> divs = sieve.divisors(x);
// 約数の Euler phi function 列挙
map<lint, lint> phi = sieve.euler_of_divisors(x);
// i = 0, 1, ..., n について i^k を格納した配列を生成. O(n)
vector vs = enumerate_kth_pows<ModInt<998244353>>(3, 10); // v = [0,1,8,27,64,125,216,343,512,729,1000,]
#pragma once
#include <cassert>
#include <map>
#include <vector>
// CUT begin
// Linear sieve algorithm for fast prime factorization
// Complexity: O(N) time, O(N) space:
// - MAXN = 10^7: ~44 MB, 80~100 ms (Codeforces / AtCoder GCC, C++17)
// - MAXN = 10^8: ~435 MB, 810~980 ms (Codeforces / AtCoder GCC, C++17)
// Reference:
// [1] D. Gries, J. Misra, "A Linear Sieve Algorithm for Finding Prime Numbers,"
// Communications of the ACM, 21(12), 999-1003, 1978.
// - https://cp-algorithms.com/algebra/prime-sieve-linear.html
// - https://37zigen.com/linear-sieve/
struct Sieve {
std::vector<int> min_factor;
std::vector<int> primes;
Sieve(int MAXN) : min_factor(MAXN + 1) {
for (int d = 2; d <= MAXN; d++) {
if (!min_factor[d]) {
min_factor[d] = d;
primes.emplace_back(d);
}
for (const auto &p : primes) {
if (p > min_factor[d] or d * p > MAXN) break;
min_factor[d * p] = p;
}
}
}
// Prime factorization for 1 <= x <= MAXN^2
// Complexity: O(log x) (x <= MAXN)
// O(MAXN / log MAXN) (MAXN < x <= MAXN^2)
template <class T> std::map<T, int> factorize(T x) const {
std::map<T, int> ret;
assert(x > 0 and
x <= ((long long)min_factor.size() - 1) * ((long long)min_factor.size() - 1));
for (const auto &p : primes) {
if (x < T(min_factor.size())) break;
while (!(x % p)) x /= p, ret[p]++;
}
if (x >= T(min_factor.size())) ret[x]++, x = 1;
while (x > 1) ret[min_factor[x]]++, x /= min_factor[x];
return ret;
}
// Enumerate divisors of 1 <= x <= MAXN^2
// Be careful of highly composite numbers https://oeis.org/A002182/list
// https://gist.github.com/dario2994/fb4713f252ca86c1254d#file-list-txt (n, (# of div. of n)):
// 45360->100, 735134400(<1e9)->1344, 963761198400(<1e12)->6720
template <class T> std::vector<T> divisors(T x) const {
std::vector<T> ret{1};
for (const auto p : factorize(x)) {
int n = ret.size();
for (int i = 0; i < n; i++) {
for (T a = 1, d = 1; d <= p.second; d++) {
a *= p.first;
ret.push_back(ret[i] * a);
}
}
}
return ret; // NOT sorted
}
// Euler phi functions of divisors of given x
// Verified: ABC212 G https://atcoder.jp/contests/abc212/tasks/abc212_g
// Complexity: O(sqrt(x) + d(x))
template <class T> std::map<T, T> euler_of_divisors(T x) const {
assert(x >= 1);
std::map<T, T> ret;
ret[1] = 1;
std::vector<T> divs{1};
for (auto p : factorize(x)) {
int n = ret.size();
for (int i = 0; i < n; i++) {
ret[divs[i] * p.first] = ret[divs[i]] * (p.first - 1);
divs.push_back(divs[i] * p.first);
for (T a = divs[i] * p.first, d = 1; d < p.second; a *= p.first, d++) {
ret[a * p.first] = ret[a] * p.first;
divs.push_back(a * p.first);
}
}
}
return ret;
}
// Moebius function Table, (-1)^{# of different prime factors} for square-free x
// return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] https://oeis.org/A008683
std::vector<int> GenerateMoebiusFunctionTable() const {
std::vector<int> ret(min_factor.size());
for (unsigned i = 1; i < min_factor.size(); i++) {
if (i == 1) {
ret[i] = 1;
} else if ((i / min_factor[i]) % min_factor[i] == 0) {
ret[i] = 0;
} else {
ret[i] = -ret[i / min_factor[i]];
}
}
return ret;
}
// Calculate [0^K, 1^K, ..., nmax^K] in O(nmax)
// Note: **0^0 == 1**
template <class MODINT> std::vector<MODINT> enumerate_kth_pows(long long K, int nmax) const {
assert(nmax < int(min_factor.size()));
assert(K >= 0);
if (K == 0) return std::vector<MODINT>(nmax + 1, 1);
std::vector<MODINT> ret(nmax + 1);
ret[0] = 0, ret[1] = 1;
for (int n = 2; n <= nmax; n++) {
if (min_factor[n] == n) {
ret[n] = MODINT(n).pow(K);
} else {
ret[n] = ret[n / min_factor[n]] * ret[min_factor[n]];
}
}
return ret;
}
};
// Sieve sieve((1 << 20));
#line 2 "number/sieve.hpp"
#include <cassert>
#include <map>
#include <vector>
// CUT begin
// Linear sieve algorithm for fast prime factorization
// Complexity: O(N) time, O(N) space:
// - MAXN = 10^7: ~44 MB, 80~100 ms (Codeforces / AtCoder GCC, C++17)
// - MAXN = 10^8: ~435 MB, 810~980 ms (Codeforces / AtCoder GCC, C++17)
// Reference:
// [1] D. Gries, J. Misra, "A Linear Sieve Algorithm for Finding Prime Numbers,"
// Communications of the ACM, 21(12), 999-1003, 1978.
// - https://cp-algorithms.com/algebra/prime-sieve-linear.html
// - https://37zigen.com/linear-sieve/
struct Sieve {
std::vector<int> min_factor;
std::vector<int> primes;
Sieve(int MAXN) : min_factor(MAXN + 1) {
for (int d = 2; d <= MAXN; d++) {
if (!min_factor[d]) {
min_factor[d] = d;
primes.emplace_back(d);
}
for (const auto &p : primes) {
if (p > min_factor[d] or d * p > MAXN) break;
min_factor[d * p] = p;
}
}
}
// Prime factorization for 1 <= x <= MAXN^2
// Complexity: O(log x) (x <= MAXN)
// O(MAXN / log MAXN) (MAXN < x <= MAXN^2)
template <class T> std::map<T, int> factorize(T x) const {
std::map<T, int> ret;
assert(x > 0 and
x <= ((long long)min_factor.size() - 1) * ((long long)min_factor.size() - 1));
for (const auto &p : primes) {
if (x < T(min_factor.size())) break;
while (!(x % p)) x /= p, ret[p]++;
}
if (x >= T(min_factor.size())) ret[x]++, x = 1;
while (x > 1) ret[min_factor[x]]++, x /= min_factor[x];
return ret;
}
// Enumerate divisors of 1 <= x <= MAXN^2
// Be careful of highly composite numbers https://oeis.org/A002182/list
// https://gist.github.com/dario2994/fb4713f252ca86c1254d#file-list-txt (n, (# of div. of n)):
// 45360->100, 735134400(<1e9)->1344, 963761198400(<1e12)->6720
template <class T> std::vector<T> divisors(T x) const {
std::vector<T> ret{1};
for (const auto p : factorize(x)) {
int n = ret.size();
for (int i = 0; i < n; i++) {
for (T a = 1, d = 1; d <= p.second; d++) {
a *= p.first;
ret.push_back(ret[i] * a);
}
}
}
return ret; // NOT sorted
}
// Euler phi functions of divisors of given x
// Verified: ABC212 G https://atcoder.jp/contests/abc212/tasks/abc212_g
// Complexity: O(sqrt(x) + d(x))
template <class T> std::map<T, T> euler_of_divisors(T x) const {
assert(x >= 1);
std::map<T, T> ret;
ret[1] = 1;
std::vector<T> divs{1};
for (auto p : factorize(x)) {
int n = ret.size();
for (int i = 0; i < n; i++) {
ret[divs[i] * p.first] = ret[divs[i]] * (p.first - 1);
divs.push_back(divs[i] * p.first);
for (T a = divs[i] * p.first, d = 1; d < p.second; a *= p.first, d++) {
ret[a * p.first] = ret[a] * p.first;
divs.push_back(a * p.first);
}
}
}
return ret;
}
// Moebius function Table, (-1)^{# of different prime factors} for square-free x
// return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] https://oeis.org/A008683
std::vector<int> GenerateMoebiusFunctionTable() const {
std::vector<int> ret(min_factor.size());
for (unsigned i = 1; i < min_factor.size(); i++) {
if (i == 1) {
ret[i] = 1;
} else if ((i / min_factor[i]) % min_factor[i] == 0) {
ret[i] = 0;
} else {
ret[i] = -ret[i / min_factor[i]];
}
}
return ret;
}
// Calculate [0^K, 1^K, ..., nmax^K] in O(nmax)
// Note: **0^0 == 1**
template <class MODINT> std::vector<MODINT> enumerate_kth_pows(long long K, int nmax) const {
assert(nmax < int(min_factor.size()));
assert(K >= 0);
if (K == 0) return std::vector<MODINT>(nmax + 1, 1);
std::vector<MODINT> ret(nmax + 1);
ret[0] = 0, ret[1] = 1;
for (int n = 2; n <= nmax; n++) {
if (min_factor[n] == n) {
ret[n] = MODINT(n).pow(K);
} else {
ret[n] = ret[n / min_factor[n]] * ret[min_factor[n]];
}
}
return ret;
}
};
// Sieve sieve((1 << 20));