This documentation is automatically generated by online-judge-tools/verification-helper
#include "number/modint_mersenne61.hpp"
$\mathbb{F}_{2^{61} - 1}$ の実装.$2^{61} - 1$ は素数.位数が通常よく用いられる modint より遥かに大きく,また乗算が bit 演算を用いて効率的に可能.rolling_hash_id
クラスなどに与えて利用することを想定.
string S;
rolling_hash<ModIntMersenne61> rh(S);
run_enumerate()
関数と組み合わせることも可能.実験的に,通常の(位数 $10^9$ 程度の)modint を 2 個組み合わせる場合よりもかなり高速.
auto ret = run_enumerate<rolling_hash<ModIntMersenne61>>(S);
#pragma once
#include <cassert>
#include <chrono>
#include <random>
// F_p, p = 2^61 - 1
// https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
class ModIntMersenne61 {
static const long long md = (1LL << 61) - 1;
long long _v;
inline unsigned hi() const noexcept { return _v >> 31; }
inline unsigned lo() const noexcept { return _v & ((1LL << 31) - 1); }
public:
static long long mod() { return md; }
ModIntMersenne61() : _v(0) {}
// 0 <= x < md * 2
explicit ModIntMersenne61(long long x) : _v(x >= md ? x - md : x) {
assert(0 <= x and x < md * 2);
}
long long val() const noexcept { return _v; }
ModIntMersenne61 operator+(const ModIntMersenne61 &x) const {
return ModIntMersenne61(_v + x._v);
}
ModIntMersenne61 operator-(const ModIntMersenne61 &x) const {
return ModIntMersenne61(_v + md - x._v);
}
ModIntMersenne61 operator*(const ModIntMersenne61 &x) const {
using ull = unsigned long long;
ull uu = (ull)hi() * x.hi() * 2;
ull ll = (ull)lo() * x.lo();
ull lu = (ull)hi() * x.lo() + (ull)lo() * x.hi();
ull sum = uu + ll + ((lu & ((1ULL << 30) - 1)) << 31) + (lu >> 30);
ull reduced = (sum >> 61) + (sum & ull(md));
return ModIntMersenne61(reduced);
}
ModIntMersenne61 pow(long long n) const {
assert(n >= 0);
ModIntMersenne61 ans(1), tmp = *this;
while (n) {
if (n & 1) ans *= tmp;
tmp *= tmp, n >>= 1;
}
return ans;
}
ModIntMersenne61 inv() const { return pow(md - 2); }
ModIntMersenne61 operator/(const ModIntMersenne61 &x) const { return *this * x.inv(); }
ModIntMersenne61 operator-() const { return ModIntMersenne61(md - _v); }
ModIntMersenne61 &operator+=(const ModIntMersenne61 &x) { return *this = *this + x; }
ModIntMersenne61 &operator-=(const ModIntMersenne61 &x) { return *this = *this - x; }
ModIntMersenne61 &operator*=(const ModIntMersenne61 &x) { return *this = *this * x; }
ModIntMersenne61 &operator/=(const ModIntMersenne61 &x) { return *this = *this / x; }
ModIntMersenne61 operator+(unsigned x) const { return ModIntMersenne61(this->_v + x); }
bool operator==(const ModIntMersenne61 &x) const { return _v == x._v; }
bool operator!=(const ModIntMersenne61 &x) const { return _v != x._v; }
bool operator<(const ModIntMersenne61 &x) const { return _v < x._v; } // To use std::map
template <class OStream> friend OStream &operator<<(OStream &os, const ModIntMersenne61 &x) {
return os << x._v;
}
static ModIntMersenne61 randgen(bool force_update = false) {
static ModIntMersenne61 b(0);
if (b == ModIntMersenne61(0) or force_update) {
std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_int_distribution<long long> d(1, ModIntMersenne61::mod());
b = ModIntMersenne61(d(mt));
}
return b;
}
};
#line 2 "number/modint_mersenne61.hpp"
#include <cassert>
#include <chrono>
#include <random>
// F_p, p = 2^61 - 1
// https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
class ModIntMersenne61 {
static const long long md = (1LL << 61) - 1;
long long _v;
inline unsigned hi() const noexcept { return _v >> 31; }
inline unsigned lo() const noexcept { return _v & ((1LL << 31) - 1); }
public:
static long long mod() { return md; }
ModIntMersenne61() : _v(0) {}
// 0 <= x < md * 2
explicit ModIntMersenne61(long long x) : _v(x >= md ? x - md : x) {
assert(0 <= x and x < md * 2);
}
long long val() const noexcept { return _v; }
ModIntMersenne61 operator+(const ModIntMersenne61 &x) const {
return ModIntMersenne61(_v + x._v);
}
ModIntMersenne61 operator-(const ModIntMersenne61 &x) const {
return ModIntMersenne61(_v + md - x._v);
}
ModIntMersenne61 operator*(const ModIntMersenne61 &x) const {
using ull = unsigned long long;
ull uu = (ull)hi() * x.hi() * 2;
ull ll = (ull)lo() * x.lo();
ull lu = (ull)hi() * x.lo() + (ull)lo() * x.hi();
ull sum = uu + ll + ((lu & ((1ULL << 30) - 1)) << 31) + (lu >> 30);
ull reduced = (sum >> 61) + (sum & ull(md));
return ModIntMersenne61(reduced);
}
ModIntMersenne61 pow(long long n) const {
assert(n >= 0);
ModIntMersenne61 ans(1), tmp = *this;
while (n) {
if (n & 1) ans *= tmp;
tmp *= tmp, n >>= 1;
}
return ans;
}
ModIntMersenne61 inv() const { return pow(md - 2); }
ModIntMersenne61 operator/(const ModIntMersenne61 &x) const { return *this * x.inv(); }
ModIntMersenne61 operator-() const { return ModIntMersenne61(md - _v); }
ModIntMersenne61 &operator+=(const ModIntMersenne61 &x) { return *this = *this + x; }
ModIntMersenne61 &operator-=(const ModIntMersenne61 &x) { return *this = *this - x; }
ModIntMersenne61 &operator*=(const ModIntMersenne61 &x) { return *this = *this * x; }
ModIntMersenne61 &operator/=(const ModIntMersenne61 &x) { return *this = *this / x; }
ModIntMersenne61 operator+(unsigned x) const { return ModIntMersenne61(this->_v + x); }
bool operator==(const ModIntMersenne61 &x) const { return _v == x._v; }
bool operator!=(const ModIntMersenne61 &x) const { return _v != x._v; }
bool operator<(const ModIntMersenne61 &x) const { return _v < x._v; } // To use std::map
template <class OStream> friend OStream &operator<<(OStream &os, const ModIntMersenne61 &x) {
return os << x._v;
}
static ModIntMersenne61 randgen(bool force_update = false) {
static ModIntMersenne61 b(0);
if (b == ModIntMersenne61(0) or force_update) {
std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_int_distribution<long long> d(1, ModIntMersenne61::mod());
b = ModIntMersenne61(d(mt));
}
return b;
}
};