This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub hitonanode/cplib-cpp
#define PROBLEM "https://judge.yosupo.jp/problem/matrix_product_mod_2" #include "../linalg_bitset.hpp" #include <algorithm> #include <bitset> #include <iostream> #include <string> #include <vector> using namespace std; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); constexpr int dim = 1 << 12; using BS = bitset<dim>; int N, M, K; cin >> N >> M >> K; vector<BS> A(N), B(M); for (auto &v : A) { string s; cin >> s; std::reverse(s.begin(), s.end()); // bitset に文字列 s を与えると s[0] が最高位になるので反転 v = BS(s); } for (auto &v : B) { string s; cin >> s; std::reverse(s.begin(), s.end()); v = BS(s); } auto C = f2_matmul<dim, dim>(A, B); for (const auto &v : C) { auto tmp = v.to_string(); std::reverse(tmp.begin(), tmp.end()); cout << tmp.substr(0, K) << '\n'; } }
#line 1 "linear_algebra_matrix/test/linalg_bitset_mul.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/matrix_product_mod_2" #line 2 "linear_algebra_matrix/linalg_bitset.hpp" #include <bitset> #include <cassert> #include <tuple> #include <utility> #include <vector> // Gauss-Jordan elimination of n * m matrix M // Complexity: O(nm + nm rank(M) / 64) // Verified: abc276_h (2000 x 8000) template <int Wmax> std::vector<std::bitset<Wmax>> f2_gauss_jordan(int W, std::vector<std::bitset<Wmax>> M) { assert(W <= Wmax); int H = M.size(), c = 0; for (int h = 0; h < H and c < W; ++h, ++c) { int piv = -1; for (int j = h; j < H; ++j) { if (M[j][c]) { piv = j; break; } } if (piv == -1) { --h; continue; } std::swap(M[piv], M[h]); for (int hh = 0; hh < H; ++hh) { if (hh != h and M[hh][c]) M[hh] ^= M[h]; } } return M; } // Rank of Gauss-Jordan eliminated matrix template <int Wmax> int f2_rank_gauss_jordan(int W, const std::vector<std::bitset<Wmax>> &M) { assert(W <= Wmax); for (int h = (int)M.size() - 1; h >= 0; h--) { int j = 0; while (j < W and !M[h][j]) ++j; if (j < W) return h + 1; } return 0; } // determinant of F2 matrix. // Return 0 if the matrix is singular, otherwise return 1. // Complexity: O(W^3 / 64) template <int Wmax> int f2_determinant(const std::vector<std::bitset<Wmax>> &M) { const int H = M.size(); if (H > Wmax) return 0; auto tmp = M; for (int h = 0; h < H; ++h) { int piv = -1; for (int j = h; j < H; ++j) { if (tmp.at(j).test(h)) { piv = j; break; } } if (piv == -1) return 0; // singular if (piv != h) std::swap(tmp.at(piv), tmp.at(h)); for (int hh = h + 1; hh < H; ++hh) { if (tmp.at(hh).test(h)) tmp.at(hh) ^= tmp.at(h); } } return 1; // nonsingular } template <int W1, int W2> std::vector<std::bitset<W2>> f2_matmul(const std::vector<std::bitset<W1>> &A, const std::vector<std::bitset<W2>> &B) { int H = A.size(), K = B.size(); std::vector<std::bitset<W2>> C(H); for (int i = 0; i < H; i++) { for (int j = 0; j < K; j++) { if (A.at(i).test(j)) C.at(i) ^= B.at(j); } } return C; } template <int Wmax> std::vector<std::bitset<Wmax>> f2_matpower(std::vector<std::bitset<Wmax>> X, long long n) { int D = X.size(); std::vector<std::bitset<Wmax>> ret(D); for (int i = 0; i < D; i++) ret[i][i] = 1; while (n) { if (n & 1) ret = f2_matmul<Wmax, Wmax>(ret, X); X = f2_matmul<Wmax, Wmax>(X, X), n >>= 1; } return ret; } // Solve Ax = b on F_2 // - retval: {true, one of the solutions, {freedoms}} (if solution exists) // {false, {}, {}} (otherwise) // Complexity: O(HW + HW rank(A) / 64 + W^2 len(freedoms)) template <int Wmax, class Vec> std::tuple<bool, std::bitset<Wmax>, std::vector<std::bitset<Wmax>>> f2_system_of_linear_equations(std::vector<std::bitset<Wmax>> A, Vec b, int W) { int H = A.size(); assert(W <= Wmax); assert(A.size() == b.size()); std::vector<std::bitset<Wmax + 1>> M(H); for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) M[i][j] = A[i][j]; M[i][W] = b[i]; } M = f2_gauss_jordan<Wmax + 1>(W + 1, M); std::vector<int> ss(W, -1); std::vector<int> ss_nonneg_js; for (int i = 0; i < H; i++) { int j = 0; while (j <= W and !M[i][j]) ++j; if (j == W) return {false, 0, {}}; if (j < W) { ss_nonneg_js.push_back(j); ss[j] = i; } } std::bitset<Wmax> x; std::vector<std::bitset<Wmax>> D; for (int j = 0; j < W; ++j) { if (ss[j] == -1) { // This part may require W^2 space complexity in output std::bitset<Wmax> d; d[j] = 1; for (int jj : ss_nonneg_js) d[jj] = M[ss[jj]][j]; D.emplace_back(d); } else { x[j] = M[ss[j]][W]; } } return std::make_tuple(true, x, D); } #line 3 "linear_algebra_matrix/test/linalg_bitset_mul.test.cpp" #include <algorithm> #line 6 "linear_algebra_matrix/test/linalg_bitset_mul.test.cpp" #include <iostream> #include <string> #line 9 "linear_algebra_matrix/test/linalg_bitset_mul.test.cpp" using namespace std; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); constexpr int dim = 1 << 12; using BS = bitset<dim>; int N, M, K; cin >> N >> M >> K; vector<BS> A(N), B(M); for (auto &v : A) { string s; cin >> s; std::reverse(s.begin(), s.end()); // bitset に文字列 s を与えると s[0] が最高位になるので反転 v = BS(s); } for (auto &v : B) { string s; cin >> s; std::reverse(s.begin(), s.end()); v = BS(s); } auto C = f2_matmul<dim, dim>(A, B); for (const auto &v : C) { auto tmp = v.to_string(); std::reverse(tmp.begin(), tmp.end()); cout << tmp.substr(0, K) << '\n'; } }