This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/manhattanmst"
#include "../manhattan_mst.hpp"
#include "../../unionfind/unionfind.hpp"
#include <iostream>
using namespace std;
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
int N;
cin >> N;
vector<int> xs(N), ys(N);
for (int i = 0; i < N; i++) cin >> xs[i] >> ys[i];
UnionFind uf(N);
long long weight = 0;
vector<pair<int, int>> edges;
for (auto [w, i, j] : manhattan_mst(xs, ys)) {
if (uf.unite(i, j)) {
weight += w;
edges.emplace_back(i, j);
}
}
cout << weight << '\n';
for (auto p : edges) cout << p.first << ' ' << p.second << '\n';
}
#line 1 "graph/test/manhattan_mst.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/manhattanmst"
#line 2 "graph/manhattan_mst.hpp"
#include <algorithm>
#include <map>
#include <numeric>
#include <tuple>
#include <vector>
// CUT begin
// Manhattan MST: 二次元平面上の頂点たちのマンハッタン距離による minimum spanning tree の O(N) 本の候補辺を列挙
// Complexity: O(N log N)
// output: [(weight_uv, u, v), ...]
// Verified: https://judge.yosupo.jp/problem/manhattanmst, https://www.codechef.com/problems/HKRMAN
// Reference:
// [1] H. Zhou, N. Shenoy, W. Nicholls,
// "Efficient minimum spanning tree construction without Delaunay triangulation,"
// Information Processing Letters, 81(5), 271-276, 2002.
template <typename T>
std::vector<std::tuple<T, int, int>> manhattan_mst(std::vector<T> xs, std::vector<T> ys) {
const int n = xs.size();
std::vector<int> idx(n);
std::iota(idx.begin(), idx.end(), 0);
std::vector<std::tuple<T, int, int>> ret;
for (int s = 0; s < 2; s++) {
for (int t = 0; t < 2; t++) {
auto cmp = [&](int i, int j) { return xs[i] + ys[i] < xs[j] + ys[j]; };
std::sort(idx.begin(), idx.end(), cmp);
std::map<T, int> sweep;
for (int i : idx) {
for (auto it = sweep.lower_bound(-ys[i]); it != sweep.end(); it = sweep.erase(it)) {
int j = it->second;
if (xs[i] - xs[j] < ys[i] - ys[j]) break;
ret.emplace_back(std::abs(xs[i] - xs[j]) + std::abs(ys[i] - ys[j]), i, j);
}
sweep[-ys[i]] = i;
}
std::swap(xs, ys);
}
for (auto &x : xs) x = -x;
}
std::sort(ret.begin(), ret.end());
return ret;
}
#line 4 "unionfind/unionfind.hpp"
#include <utility>
#line 6 "unionfind/unionfind.hpp"
// CUT begin
// UnionFind Tree (0-indexed), based on size of each disjoint set
struct UnionFind {
std::vector<int> par, cou;
UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); }
int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); }
bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y) return false;
if (cou[x] < cou[y]) std::swap(x, y);
par[y] = x, cou[x] += cou[y];
return true;
}
int count(int x) { return cou[find(x)]; }
bool same(int x, int y) { return find(x) == find(y); }
std::vector<std::vector<int>> groups() {
std::vector<std::vector<int>> ret(par.size());
for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i);
ret.erase(std::remove_if(ret.begin(), ret.end(),
[&](const std::vector<int> &v) { return v.empty(); }),
ret.end());
return ret;
}
};
#line 4 "graph/test/manhattan_mst.test.cpp"
#include <iostream>
using namespace std;
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
int N;
cin >> N;
vector<int> xs(N), ys(N);
for (int i = 0; i < N; i++) cin >> xs[i] >> ys[i];
UnionFind uf(N);
long long weight = 0;
vector<pair<int, int>> edges;
for (auto [w, i, j] : manhattan_mst(xs, ys)) {
if (uf.unite(i, j)) {
weight += w;
edges.emplace_back(i, j);
}
}
cout << weight << '\n';
for (auto p : edges) cout << p.first << ' ' << p.second << '\n';
}