This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub hitonanode/cplib-cpp
#include "../bipartite_matching(slow).hpp" #include <iostream> #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_7_A" int main() { std::cin.tie(nullptr), std::ios::sync_with_stdio(false); int X, Y, E; std::cin >> X >> Y >> E; BipartiteMatching graph(X + Y); while (E--) { int s, t; std::cin >> s >> t; graph.add_edge(s, X + t); } std::cout << graph.solve() << '\n'; }
#line 2 "graph/bipartite_matching(slow).hpp" #include <iostream> #include <vector> // CUT begin // Bipartite matching of undirected bipartite graph // <https://ei1333.github.io/luzhiled/snippets/graph/bipartite-matching.html> // Comprexity: O(VE) struct BipartiteMatching { int V; // # of vertices std::vector<std::vector<int>> edges; // Adjacency list std::vector<int> match; // match[i] = (Partner of i'th node) or -1 (No parter) std::vector<int> used; int timestamp; BipartiteMatching(int V = 0) : V(V), edges(V), match(V, -1), used(V, 0), timestamp(0) {} void add_edge(int u, int v) { edges[u].push_back(v); edges[v].push_back(u); } bool dfs(int v) { used[v] = timestamp; for (auto to : edges[v]) { if (match[to] < 0 or (used[match[to]] != timestamp and dfs(match[to]))) { match[v] = to; match[to] = v; return true; } } return false; } int solve() // Count up newly formed pairs { int ret = 0; for (int v = 0; v < V; v++) if (match[v] < 0) { ++timestamp; ret += dfs(v); } return ret; } friend std::ostream &operator<<(std::ostream &os, const BipartiteMatching &bm) { os << "{V=" << bm.V << ":"; for (int i = 0; i < bm.V; i++) if (i < bm.match[i]) { os << "(" << i << "-" << bm.match[i] << "),"; } os << "}"; return os; } }; #line 3 "graph/test/bipartite_matching(slow).test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_7_A" int main() { std::cin.tie(nullptr), std::ios::sync_with_stdio(false); int X, Y, E; std::cin >> X >> Y >> E; BipartiteMatching graph(X + Y); while (E--) { int s, t; std::cin >> s >> t; graph.add_edge(s, X + t); } std::cout << graph.solve() << '\n'; }