cplib-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub hitonanode/cplib-cpp

:heavy_check_mark: flow/test/mincostflow.yuki1324.test.cpp

Depends on

Code

#define PROBLEM "https://yukicoder.me/problems/no/1324"
#include "../mincostflow_nonegativeloop.hpp"
#include <iostream>
#include <vector>
using namespace std;

int main() {
    cin.tie(nullptr), ios::sync_with_stdio(false);
    int N, K;
    cin >> N >> K;
    vector<int> A(N), B(N);
    vector<vector<int>> P(N, vector<int>(N));
    for (auto &x : A) cin >> x;
    for (auto &x : B) cin >> x;
    for (auto &v : P) {
        for (auto &x : v) cin >> x;
    }

    const int gs = N * 2, gt = gs + 1;
    MinCostFlow<int, long long> graph(gt + 1);
    long long ret = 0;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            ret += P[i][j] * P[i][j];
            for (int a = 0; a < A[i]; a++) graph.add_edge(i, j + N, 1, 2 * (a - P[i][j]) + 1);
        }
        graph.add_edge(gs, i, A[i], 0);
        graph.add_edge(i + N, gt, B[i], 0);
    }
    cout << ret + graph.flow(gs, gt, K).second << '\n';
}
#line 1 "flow/test/mincostflow.yuki1324.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1324"
#line 2 "flow/mincostflow_nonegativeloop.hpp"
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

// CUT begin
// Minimum cost flow WITH NO NEGATIVE CYCLE (just negative cost edge is allowed)
// Verified:
// - SRM 770 Div1 Medium https://community.topcoder.com/stat?c=problem_statement&pm=15702
// - CodeChef LTIME98 Ancient Magic https://www.codechef.com/problems/ANCT
template <class Cap, class Cost, Cost INF_COST = std::numeric_limits<Cost>::max() / 2>
struct MinCostFlow {
    template <class E> struct csr {
        std::vector<int> start;
        std::vector<E> elist;
        explicit csr(int n, const std::vector<std::pair<int, E>> &edges)
            : start(n + 1), elist(edges.size()) {
            for (auto e : edges) { start[e.first + 1]++; }
            for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; }
            auto counter = start;
            for (auto e : edges) { elist[counter[e.first]++] = e.second; }
        }
    };

public:
    MinCostFlow() {}
    explicit MinCostFlow(int n) : is_dual_infeasible(false), _n(n) {
        static_assert(std::numeric_limits<Cap>::max() > 0, "max() must be greater than 0");
    }

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        if (cost < 0) is_dual_infeasible = true;
        int m = int(_edges.size());
        _edges.push_back({from, to, cap, 0, cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }

    std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        int m = int(_edges.size());
        std::vector<int> edge_idx(m);

        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
                elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
            }
            auto _g = csr<_edge>(_n, elist);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();

        auto result = slope(g, s, t, flow_limit);

        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }

        return result;
    }

private:
    bool is_dual_infeasible;
    int _n;
    std::vector<edge> _edges;

    // inside edge
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<Cap, Cost>> slope(csr<_edge> &g, int s, int t, Cap flow_limit) {
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge

        // dual_dist[i] = (dual[i], dist[i])
        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        if (is_dual_infeasible) {
            auto check_dag = [&]() {
                std::vector<int> deg_in(_n);
                for (int v = 0; v < _n; v++) {
                    for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                        deg_in[g.elist[i].to] += g.elist[i].cap > 0;
                    }
                }
                std::vector<int> st;
                st.reserve(_n);
                for (int i = 0; i < _n; i++) {
                    if (!deg_in[i]) st.push_back(i);
                }
                for (int n = 0; n < _n; n++) {
                    if (int(st.size()) == n) return false; // Not DAG
                    int now = st[n];
                    for (int i = g.start[now]; i < g.start[now + 1]; i++) {
                        const auto &e = g.elist[i];
                        if (!e.cap) continue;
                        deg_in[e.to]--;
                        if (deg_in[e.to] == 0) st.push_back(e.to);
                        if (dual_dist[e.to].first >= dual_dist[now].first + e.cost)
                            dual_dist[e.to].first = dual_dist[now].first + e.cost;
                    }
                }
                return true;
            }();
            if (!check_dag) throw;
            auto dt = dual_dist[t].first;
            for (int v = 0; v < _n; v++) dual_dist[v].first -= dt;
            is_dual_infeasible = false;
        }
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; i++) {
                dual_dist[i].second = std::numeric_limits<Cost>::max();
            }
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();

            // que[0..heap_r) was heapified
            unsigned heap_r = 0;

            dual_dist[s].second = 0;
            que_min.push_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        heap_r++;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    heap_r--;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) {
                            que_min.push_back(e.to);
                        } else {
                            que.push_back(Q{dist_to, e.to});
                        }
                    }
                }
            }
            if (!vis[t]) { return false; }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
                //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,
                //         t) + dual[t] + shortest(s, v) = shortest(s, v) -
                //         shortest(s, t) >= 0 - (n-1)C
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        bool first_aug = true;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            }
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto &e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (!first_aug && prev_cost_per_flow == d) { result.pop_back(); }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
            first_aug = false;
        }
        return result;
    }
};
#line 3 "flow/test/mincostflow.yuki1324.test.cpp"
#include <iostream>
#line 5 "flow/test/mincostflow.yuki1324.test.cpp"
using namespace std;

int main() {
    cin.tie(nullptr), ios::sync_with_stdio(false);
    int N, K;
    cin >> N >> K;
    vector<int> A(N), B(N);
    vector<vector<int>> P(N, vector<int>(N));
    for (auto &x : A) cin >> x;
    for (auto &x : B) cin >> x;
    for (auto &v : P) {
        for (auto &x : v) cin >> x;
    }

    const int gs = N * 2, gt = gs + 1;
    MinCostFlow<int, long long> graph(gt + 1);
    long long ret = 0;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            ret += P[i][j] * P[i][j];
            for (int a = 0; a < A[i]; a++) graph.add_edge(i, j + N, 1, 2 * (a - P[i][j]) + 1);
        }
        graph.add_edge(gs, i, A[i], 0);
        graph.add_edge(i + N, gt, B[i], 0);
    }
    cout << ret + graph.flow(gs, gt, K).second << '\n';
}
Back to top page