cplib-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub hitonanode/cplib-cpp

:heavy_check_mark: data_structure/test/rectangle_add_rectangle_sum.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum"
#include "../rectangle_add_rectangle_sum.hpp"
#include "../../modint.hpp"
#include <iostream>
using namespace std;
using mint = ModInt<998244353>;

int main() {
    cin.tie(nullptr), ios::sync_with_stdio(false);

    RectangleAddRectangleSum<int, mint> rect_sum;

    const int bias = 500000000;

    int N, Q;
    cin >> N >> Q;

    while (N--) {
        int l, r, d, u;
        mint w;
        cin >> l >> d >> r >> u >> w;
        l -= bias;
        d -= bias;
        r -= bias;
        u -= bias;
        rect_sum.add_rectangle(l, r, d, u, w);
    }

    while (Q--) {
        int l, r, d, u;
        cin >> l >> d >> r >> u;
        l -= bias;
        d -= bias;
        r -= bias;
        u -= bias;
        rect_sum.add_query(l, r, d, u);
    }

    auto ret = rect_sum.solve();
    for (auto x : ret) cout << x << '\n';
}
#line 1 "data_structure/test/rectangle_add_rectangle_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum"
#line 2 "segmenttree/binary_indexed_tree.hpp"
#include <algorithm>
#include <vector>

// CUT begin
// 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len))
template <class T> struct BIT {
    int n;
    std::vector<T> data;
    BIT(int len = 0) : n(len), data(len) {}
    void reset() { std::fill(data.begin(), data.end(), T(0)); }
    void add(int pos, T v) { // a[pos] += v
        pos++;
        while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos;
    }
    T sum(int k) const { // a[0] + ... + a[k - 1]
        T res = 0;
        while (k > 0) res += data[k - 1], k -= k & -k;
        return res;
    }

    T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1]

    template <class OStream> friend OStream &operator<<(OStream &os, const BIT &bit) {
        T prv = 0;
        os << '[';
        for (int i = 1; i <= bit.n; i++) {
            T now = bit.sum(i);
            os << now - prv << ',', prv = now;
        }
        return os << ']';
    }
};
#line 4 "data_structure/rectangle_add_rectangle_sum.hpp"
#include <tuple>
#line 6 "data_structure/rectangle_add_rectangle_sum.hpp"

// Static rectangle add rectangle sum
// Calculate sums of rectangular weights inside the given rectangles
// Complexity: O(q log q), q = # of rectangles / queries
template <class Int, class T> class RectangleAddRectangleSum {
    struct AddQuery {
        Int xl, xr, yl, yr;
        T val;
    };
    struct SumQuery {
        Int xl, xr, yl, yr;
    };
    std::vector<AddQuery> add_queries;
    std::vector<SumQuery> sum_queries;

public:
    RectangleAddRectangleSum() = default;

    // A[x][y] += val for (x, y) in [xl, xr) * [yl, yr)
    void add_rectangle(Int xl, Int xr, Int yl, Int yr, T val) {
        add_queries.push_back(AddQuery{xl, xr, yl, yr, val});
    }

    // Get sum of A[x][y] for (x, y) in [xl, xr) * [yl, yr)
    void add_query(Int xl, Int xr, Int yl, Int yr) {
        sum_queries.push_back(SumQuery{xl, xr, yl, yr});
    }

    std::vector<T> solve() const {
        std::vector<Int> ys;
        for (const auto &a : add_queries) {
            ys.push_back(a.yl);
            ys.push_back(a.yr);
        }
        std::sort(ys.begin(), ys.end());
        ys.erase(std::unique(ys.begin(), ys.end()), ys.end());

        const int Y = ys.size();

        std::vector<std::tuple<Int, int, int>> ops;
        for (int q = 0; q < int(sum_queries.size()); ++q) {
            ops.emplace_back(sum_queries[q].xl, 0, q);
            ops.emplace_back(sum_queries[q].xr, 1, q);
        }
        for (int q = 0; q < int(add_queries.size()); ++q) {
            ops.emplace_back(add_queries[q].xl, 2, q);
            ops.emplace_back(add_queries[q].xr, 3, q);
        }
        std::sort(ops.begin(), ops.end());

        BIT<T> b00(Y), b01(Y), b10(Y), b11(Y);
        std::vector<T> ret(sum_queries.size());
        for (auto o : ops) {
            int qtype = std::get<1>(o), q = std::get<2>(o);
            if (qtype >= 2) {
                const AddQuery &query = add_queries.at(q);
                int i = std::lower_bound(ys.begin(), ys.end(), query.yl) - ys.begin();
                int j = std::lower_bound(ys.begin(), ys.end(), query.yr) - ys.begin();
                T x = std::get<0>(o);
                T yi = query.yl, yj = query.yr;
                if (qtype & 1) std::swap(i, j), std::swap(yi, yj);

                b00.add(i, x * yi * query.val);
                b01.add(i, -x * query.val);
                b10.add(i, -yi * query.val);
                b11.add(i, query.val);
                b00.add(j, -x * yj * query.val);
                b01.add(j, x * query.val);
                b10.add(j, yj * query.val);
                b11.add(j, -query.val);
            } else {
                const SumQuery &query = sum_queries.at(q);
                int i = std::lower_bound(ys.begin(), ys.end(), query.yl) - ys.begin();
                int j = std::lower_bound(ys.begin(), ys.end(), query.yr) - ys.begin();
                T x = std::get<0>(o);
                T yi = query.yl, yj = query.yr;
                if (qtype & 1) std::swap(i, j), std::swap(yi, yj);

                ret[q] += b00.sum(i) + b01.sum(i) * yi + b10.sum(i) * x + b11.sum(i) * x * yi;
                ret[q] -= b00.sum(j) + b01.sum(j) * yj + b10.sum(j) * x + b11.sum(j) * x * yj;
            }
        }
        return ret;
    }
};
#line 2 "modint.hpp"
#include <cassert>
#include <iostream>
#include <set>
#line 6 "modint.hpp"

template <int md> struct ModInt {
    using lint = long long;
    constexpr static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    constexpr ModInt() : val_(0) {}
    constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    constexpr ModInt(lint v) { _setval(v % md + md); }
    constexpr explicit operator bool() const { return val_ != 0; }
    constexpr ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    constexpr ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    constexpr ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    constexpr ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; }
    constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
    constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    constexpr bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }

    constexpr ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static constexpr int cache_limit = std::min(md, 1 << 21);
    static std::vector<ModInt> facs, facinvs, invs;

    constexpr static void _precalculation(int N) {
        const int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }

    constexpr ModInt inv() const {
        if (this->val_ < cache_limit) {
            if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }
    constexpr ModInt fac() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val_];
    }
    constexpr ModInt facinv() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val_];
    }
    constexpr ModInt doublefac() const {
        lint k = (this->val_ + 1) / 2;
        return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                                : ModInt(k).fac() * ModInt(2).pow(k);
    }

    constexpr ModInt nCr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv() * ModInt(r).facinv();
    }

    constexpr ModInt nPr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv();
    }

    static ModInt binom(int n, int r) {
        static long long bruteforce_times = 0;

        if (r < 0 or n < r) return ModInt(0);
        if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r);

        r = std::min(r, n - r);

        ModInt ret = ModInt(r).facinv();
        for (int i = 0; i < r; ++i) ret *= n - i;
        bruteforce_times += r;

        return ret;
    }

    // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
    // Complexity: O(sum(ks))
    template <class Vec> static ModInt multinomial(const Vec &ks) {
        ModInt ret{1};
        int sum = 0;
        for (int k : ks) {
            assert(k >= 0);
            ret *= ModInt(k).facinv(), sum += k;
        }
        return ret * ModInt(sum).fac();
    }

    // Catalan number, C_n = binom(2n, n) / (n + 1)
    // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
    // https://oeis.org/A000108
    // Complexity: O(n)
    static ModInt catalan(int n) {
        if (n < 0) return ModInt(0);
        return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv();
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};

using ModInt998244353 = ModInt<998244353>;
// using mint = ModInt<998244353>;
// using mint = ModInt<1000000007>;
#line 5 "data_structure/test/rectangle_add_rectangle_sum.test.cpp"
using namespace std;
using mint = ModInt<998244353>;

int main() {
    cin.tie(nullptr), ios::sync_with_stdio(false);

    RectangleAddRectangleSum<int, mint> rect_sum;

    const int bias = 500000000;

    int N, Q;
    cin >> N >> Q;

    while (N--) {
        int l, r, d, u;
        mint w;
        cin >> l >> d >> r >> u >> w;
        l -= bias;
        d -= bias;
        r -= bias;
        u -= bias;
        rect_sum.add_rectangle(l, r, d, u, w);
    }

    while (Q--) {
        int l, r, d, u;
        cin >> l >> d >> r >> u;
        l -= bias;
        d -= bias;
        r -= bias;
        u -= bias;
        rect_sum.add_query(l, r, d, u);
    }

    auto ret = rect_sum.solve();
    for (auto x : ret) cout << x << '\n';
}
Back to top page