cplib-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub hitonanode/cplib-cpp

:heavy_check_mark: data_structure/test/link_cut_tree.pathadd.stress.test.cpp

Depends on

Code

#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A" // DUMMY
#include "../link_cut_tree.hpp"
#include "../../modint.hpp"
#include "../../random/xorshift.hpp"

#include <algorithm>
#include <cassert>
#include <cstdio>
#include <unordered_set>
#include <utility>
using namespace std;

constexpr int md = 998244353;
const int NTRY = 10000;
const int VMAX = 100;
const int QPERTRY = 500;
using mint = ModInt<md>;

using S = pair<int, mint>;
using F = pair<bool, mint>;
S op(S l, S r) { return {l.first + r.first, l.second + r.second}; }
S mapping(F f, S x) { return f.first ? S{x.first, x.second + x.first * f.second} : x; }
S reversal(S x) { return x; }
F composition(F fnew, F gold) { return fnew.first ? F{true, fnew.second + gold.second} : gold; }
F id() { return F{false, 0}; }
using LCT = lazy_linkcuttree<S, F, op, reversal, mapping, composition, id>;

vector<int> connected_vertices(int N, int r, const vector<unordered_set<int>> &to) {
    vector<int> visited(N);
    vector<int> ret, tmp{r};
    while (tmp.size()) {
        int now = tmp.back();
        tmp.pop_back();
        ret.push_back(now);
        visited[now] = 1;
        for (auto nxt : to[now]) {
            if (!visited[nxt]) tmp.push_back(nxt);
        }
    }
    return ret;
}

vector<int> get_rev_path(int s, int t, int prv, const vector<unordered_set<int>> &to) {
    if (s == t) return {s};
    for (auto nxt : to[s]) {
        if (nxt == prv) continue;
        auto v = get_rev_path(nxt, t, s, to);
        if (v.size()) {
            v.push_back(s);
            return v;
        }
    }
    return {};
}

mint gen_random_mint() { return mint(rand_int() % mint::mod()); }

int main() {
    for (int ntry = 0; ntry < NTRY; ntry++) {
        const int N = 2 + rand_int() % (VMAX - 1);
        const int W = rand_int() % N + 1;
        vector<mint> A(N);
        LCT tree;
        vector<LCT::Node *> nodes;

        for (int i = 0; i < N; i++) {
            A[i] = gen_random_mint();
            nodes.push_back(tree.make_node({1, A[i]}));
        }
        vector<pair<int, int>> edges;
        vector<unordered_set<int>> to(N);

        for (int i = 1; i < N; i++) {
            int j = max<int>(0, i - 1 - rand_int() % W);
            edges.emplace_back(i, j);
            to[i].insert(j);
            to[j].insert(i);
            tree.link(nodes[i], nodes[j]);
        }

        for (int q = 0; q < QPERTRY; q++) {
            const int tp = rand_int() % 5;
            if (tp == 0) {
                // cut() & link()
                int e = rand_int() % edges.size();
                int a = edges[e].first, b = edges[e].second;

                to[a].erase(b), to[b].erase(a);
                tree.cut(nodes[a], nodes[b]);

                vector<int> va = connected_vertices(N, a, to), vb = connected_vertices(N, b, to);
                assert(int(va.size() + vb.size()) == N);
                a = va[rand_int() % va.size()], b = vb[rand_int() % vb.size()];
                to[a].insert(b), to[b].insert(a);
                edges[e] = {a, b};
                tree.link(nodes[a], nodes[b]);
            } else if (tp == 1) {
                // apply()
                const int u = rand_int() % N, v = rand_int() % N;
                const auto a = gen_random_mint();
                tree.apply(nodes[u], nodes[v], {true, a});

                for (auto i : get_rev_path(u, v, -1, to)) A[i] += a;

            } else if (tp == 2) {
                // prod()
                const int u = rand_int() % N, v = rand_int() % N;
                mint ret1 = tree.prod(nodes[u], nodes[v]).second, ret2 = 0;
                for (auto i : get_rev_path(v, u, -1, to)) ret2 += A[i];
                assert(ret1 == ret2);

            } else if (tp == 3) {
                // set()
                const int u = rand_int() % N;
                const auto a = gen_random_mint();
                tree.set(nodes[u], {1, a});
                A[u] = a;

            } else if (tp == 4) {
                // get()
                const int u = rand_int() % N;
                const mint a = tree.get(nodes[u]).second;
                assert(a == A[u]);
            } else {
                exit(8);
            }
        }
    }
    puts("Hello World");
}
#line 1 "data_structure/test/link_cut_tree.pathadd.stress.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A" // DUMMY
#line 2 "data_structure/link_cut_tree.hpp"

// CUT begin
// Link-Cut Tree
// Reference:
// - https://www.slideshare.net/iwiwi/2-12188845
// - https://ei1333.github.io/library/structure/lct/link-cut-tree-lazy-path.cpp
template <class S, class F, S (*op)(S, S), S (*reversal)(S), S (*mapping)(F, S),
          F (*composition)(F, F), F (*id)()>
class lazy_linkcuttree {
public:
    struct Node {
        Node *l, *r, *p;
        S d, sum;
        F lz;
        bool is_reversed;
        int sz;
        Node(S val)
            : l(nullptr), r(nullptr), p(nullptr), d(val), sum(val), lz(id()), is_reversed(false),
              sz(1) {}
        bool is_root() const { return !p || (p->l != this and p->r != this); }
        template <class OStream> friend OStream &operator<<(OStream &os, const Node &n) {
            os << '[';
            if (n.l) os << *(n.l) << ',';
            os << n.d << ',';
            if (n.r) os << *(n.r);
            return os << ']';
        }
    };

protected:
    void update(Node *t) {
        if (t == nullptr) return;
        t->sz = 1;
        t->sum = t->d;
        if (t->l) {
            t->sz += t->l->sz;
            t->sum = op(t->l->sum, t->sum);
        }
        if (t->r) {
            t->sz += t->r->sz;
            t->sum = op(t->sum, t->r->sum);
        }
    }
    void all_apply(Node *a, F b) {
        a->d = mapping(b, a->d);
        a->sum = mapping(b, a->sum);
        a->lz = composition(b, a->lz);
    }
    void _toggle(Node *t) {
        auto tmp = t->l;
        t->l = t->r, t->r = tmp;
        t->sum = reversal(t->sum);
        t->is_reversed ^= true;
    }

    void push(Node *&t) {
        if (t->lz != id()) {
            if (t->l) all_apply(t->l, t->lz);
            if (t->r) all_apply(t->r, t->lz);
            t->lz = id();
        }
        if (t->is_reversed) {
            if (t->l) _toggle(t->l);
            if (t->r) _toggle(t->r);
            t->is_reversed = false;
        }
    }

    void _rot_r(Node *t) {
        Node *x = t->p, *y = x->p;
        if ((x->l = t->r)) t->r->p = x;
        t->r = x, x->p = t;
        update(x), update(t);
        if ((t->p = y)) {
            if (y->l == x) y->l = t;
            if (y->r == x) y->r = t;
            update(y);
        }
    }
    void _rot_l(Node *t) {
        Node *x = t->p, *y = x->p;
        if ((x->r = t->l)) t->l->p = x;
        t->l = x, x->p = t;
        update(x), update(t);
        if ((t->p = y)) {
            if (y->l == x) y->l = t;
            if (y->r == x) y->r = t;
            update(y);
        }
    }

    void _splay(Node *t) {
        push(t);
        while (!t->is_root()) {
            Node *q = t->p;
            if (q->is_root()) {
                push(q), push(t);
                if (q->l == t)
                    _rot_r(t);
                else
                    _rot_l(t);
            } else {
                Node *r = q->p;
                push(r), push(q), push(t);
                if (r->l == q) {
                    if (q->l == t)
                        _rot_r(q), _rot_r(t);
                    else
                        _rot_l(t), _rot_r(t);
                } else {
                    if (q->r == t)
                        _rot_l(q), _rot_l(t);
                    else
                        _rot_r(t), _rot_l(t);
                }
            }
        }
    }

public:
    [[nodiscard]] Node *make_node(S val) { return new Node(val); }

    void evert(Node *t) { expose(t), _toggle(t), push(t); }

    Node *expose(Node *t) {
        Node *rp = nullptr;
        for (Node *cur = t; cur; cur = cur->p) {
            _splay(cur);
            cur->r = rp;
            update(cur);
            rp = cur;
        }
        _splay(t);
        return rp;
    }

    void link(Node *chi, Node *par) {
        evert(chi);
        expose(par);
        chi->p = par;
        par->r = chi;
        update(par);
    }

    void cut(Node *chi) {
        expose(chi);
        Node *par = chi->l;
        chi->l = nullptr;
        update(chi);
        par->p = nullptr;
    }

    void cut(Node *u, Node *v) { evert(u), cut(v); }

    Node *lca(Node *u, Node *v) { return expose(u), expose(v); }

    void set(Node *t, S x) { expose(t), t->d = x, update(t); }

    S get(Node *t) { return expose(t), t->d; }

    void apply(Node *u, Node *v, const F &x) {
        evert(u);
        expose(v);
        all_apply(v, x);
        push(v);
    }

    S prod(Node *u, Node *v) {
        evert(u);
        expose(v);
        return v->sum;
    }

    Node *kth_parent(Node *t, int k) {
        expose(t);
        while (t) {
            push(t);
            if (t->r and t->r->sz > k) {
                t = t->r;
            } else {
                if (t->r) k -= t->r->sz;
                if (k == 0) return t;
                k--;
                t = t->l;
            }
        }
        return nullptr;
    }

    bool is_connected(Node *u, Node *v) {
        expose(u), expose(v);
        return u == v or u->p;
    }
};
/* example usage:
struct S {
    int sz, sum, lhi, rhi, inhi;
    S(int x) : sz(1), sum(x), lhi(x), rhi(x), inhi(x) {}
    S(int sz_, int sum_, int lhi_, int rhi_, int inhi_)
        : sz(sz_), sum(sum_), lhi(lhi_), rhi(rhi_), inhi(inhi_) {}
};
using F = pair<bool, int>;
S op(S l, S r) {
    return S(l.sz + r.sz, l.sum + r.sum, max(l.sum + r.lhi, l.lhi), max(l.rhi + r.sum, r.rhi),
max<int>({l.inhi, r.inhi, l.rhi + r.lhi}));
}
S reversal(S x) { return S(x.sz, x.sum, x.rhi, x.lhi, x.inhi); }
S mapping(F f, S x) {
    if (f.first) {
        auto v = f.second;
        auto sum = x.sz * v;
        return S{x.sz, sum, max(v, sum), max(v, sum), max(v, sum)};
    } else {
        return x;
    }
}
F composition(F fnew, F gold) { return fnew.first ? fnew : gold; }
F id() { return {false, 0}; }
using LCT = lazy_linkcuttree<S, F, op, reversal, mapping, composition, id>;
vector<LCT::Node*> vs;
*/
#line 2 "modint.hpp"
#include <cassert>
#include <iostream>
#include <set>
#include <vector>

template <int md> struct ModInt {
    using lint = long long;
    constexpr static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    constexpr ModInt() : val_(0) {}
    constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    constexpr ModInt(lint v) { _setval(v % md + md); }
    constexpr explicit operator bool() const { return val_ != 0; }
    constexpr ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    constexpr ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    constexpr ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    constexpr ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; }
    constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
    constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    constexpr bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }

    constexpr ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static constexpr int cache_limit = std::min(md, 1 << 21);
    static std::vector<ModInt> facs, facinvs, invs;

    constexpr static void _precalculation(int N) {
        const int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }

    constexpr ModInt inv() const {
        if (this->val_ < cache_limit) {
            if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }
    constexpr ModInt fac() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val_];
    }
    constexpr ModInt facinv() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val_];
    }
    constexpr ModInt doublefac() const {
        lint k = (this->val_ + 1) / 2;
        return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                                : ModInt(k).fac() * ModInt(2).pow(k);
    }

    constexpr ModInt nCr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv() * ModInt(r).facinv();
    }

    constexpr ModInt nPr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv();
    }

    static ModInt binom(int n, int r) {
        static long long bruteforce_times = 0;

        if (r < 0 or n < r) return ModInt(0);
        if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r);

        r = std::min(r, n - r);

        ModInt ret = ModInt(r).facinv();
        for (int i = 0; i < r; ++i) ret *= n - i;
        bruteforce_times += r;

        return ret;
    }

    // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
    // Complexity: O(sum(ks))
    template <class Vec> static ModInt multinomial(const Vec &ks) {
        ModInt ret{1};
        int sum = 0;
        for (int k : ks) {
            assert(k >= 0);
            ret *= ModInt(k).facinv(), sum += k;
        }
        return ret * ModInt(sum).fac();
    }

    // Catalan number, C_n = binom(2n, n) / (n + 1)
    // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
    // https://oeis.org/A000108
    // Complexity: O(n)
    static ModInt catalan(int n) {
        if (n < 0) return ModInt(0);
        return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv();
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};

using ModInt998244353 = ModInt<998244353>;
// using mint = ModInt<998244353>;
// using mint = ModInt<1000000007>;
#line 2 "random/xorshift.hpp"
#include <cstdint>

// CUT begin
uint32_t rand_int() // XorShift random integer generator
{
    static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
    uint32_t t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }
#line 5 "data_structure/test/link_cut_tree.pathadd.stress.test.cpp"

#include <algorithm>
#line 8 "data_structure/test/link_cut_tree.pathadd.stress.test.cpp"
#include <cstdio>
#include <unordered_set>
#include <utility>
using namespace std;

constexpr int md = 998244353;
const int NTRY = 10000;
const int VMAX = 100;
const int QPERTRY = 500;
using mint = ModInt<md>;

using S = pair<int, mint>;
using F = pair<bool, mint>;
S op(S l, S r) { return {l.first + r.first, l.second + r.second}; }
S mapping(F f, S x) { return f.first ? S{x.first, x.second + x.first * f.second} : x; }
S reversal(S x) { return x; }
F composition(F fnew, F gold) { return fnew.first ? F{true, fnew.second + gold.second} : gold; }
F id() { return F{false, 0}; }
using LCT = lazy_linkcuttree<S, F, op, reversal, mapping, composition, id>;

vector<int> connected_vertices(int N, int r, const vector<unordered_set<int>> &to) {
    vector<int> visited(N);
    vector<int> ret, tmp{r};
    while (tmp.size()) {
        int now = tmp.back();
        tmp.pop_back();
        ret.push_back(now);
        visited[now] = 1;
        for (auto nxt : to[now]) {
            if (!visited[nxt]) tmp.push_back(nxt);
        }
    }
    return ret;
}

vector<int> get_rev_path(int s, int t, int prv, const vector<unordered_set<int>> &to) {
    if (s == t) return {s};
    for (auto nxt : to[s]) {
        if (nxt == prv) continue;
        auto v = get_rev_path(nxt, t, s, to);
        if (v.size()) {
            v.push_back(s);
            return v;
        }
    }
    return {};
}

mint gen_random_mint() { return mint(rand_int() % mint::mod()); }

int main() {
    for (int ntry = 0; ntry < NTRY; ntry++) {
        const int N = 2 + rand_int() % (VMAX - 1);
        const int W = rand_int() % N + 1;
        vector<mint> A(N);
        LCT tree;
        vector<LCT::Node *> nodes;

        for (int i = 0; i < N; i++) {
            A[i] = gen_random_mint();
            nodes.push_back(tree.make_node({1, A[i]}));
        }
        vector<pair<int, int>> edges;
        vector<unordered_set<int>> to(N);

        for (int i = 1; i < N; i++) {
            int j = max<int>(0, i - 1 - rand_int() % W);
            edges.emplace_back(i, j);
            to[i].insert(j);
            to[j].insert(i);
            tree.link(nodes[i], nodes[j]);
        }

        for (int q = 0; q < QPERTRY; q++) {
            const int tp = rand_int() % 5;
            if (tp == 0) {
                // cut() & link()
                int e = rand_int() % edges.size();
                int a = edges[e].first, b = edges[e].second;

                to[a].erase(b), to[b].erase(a);
                tree.cut(nodes[a], nodes[b]);

                vector<int> va = connected_vertices(N, a, to), vb = connected_vertices(N, b, to);
                assert(int(va.size() + vb.size()) == N);
                a = va[rand_int() % va.size()], b = vb[rand_int() % vb.size()];
                to[a].insert(b), to[b].insert(a);
                edges[e] = {a, b};
                tree.link(nodes[a], nodes[b]);
            } else if (tp == 1) {
                // apply()
                const int u = rand_int() % N, v = rand_int() % N;
                const auto a = gen_random_mint();
                tree.apply(nodes[u], nodes[v], {true, a});

                for (auto i : get_rev_path(u, v, -1, to)) A[i] += a;

            } else if (tp == 2) {
                // prod()
                const int u = rand_int() % N, v = rand_int() % N;
                mint ret1 = tree.prod(nodes[u], nodes[v]).second, ret2 = 0;
                for (auto i : get_rev_path(v, u, -1, to)) ret2 += A[i];
                assert(ret1 == ret2);

            } else if (tp == 3) {
                // set()
                const int u = rand_int() % N;
                const auto a = gen_random_mint();
                tree.set(nodes[u], {1, a});
                A[u] = a;

            } else if (tp == 4) {
                // get()
                const int u = rand_int() % N;
                const mint a = tree.get(nodes[u]).second;
                assert(a == A[u]);
            } else {
                exit(8);
            }
        }
    }
    puts("Hello World");
}
Back to top page