This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A" // DUMMY
#include "../link_cut_tree.hpp"
#include "../../random/xorshift.hpp"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
struct S {
int sz, sum, lhi, rhi, inhi;
S() = default;
S(int x) : sz(1), sum(x), lhi(x), rhi(x), inhi(x) {}
S(int sz_, int sum_, int lhi_, int rhi_, int inhi_)
: sz(sz_), sum(sum_), lhi(lhi_), rhi(rhi_), inhi(inhi_) {}
bool operator==(const S &x) const {
return sz == x.sz and sum == x.sum and lhi == x.lhi and rhi == x.rhi and inhi == x.inhi;
}
template <class OStream> friend OStream &operator<<(OStream &os, const S &x) {
return os << '[' << x.sz << ',' << x.sum << ',' << x.lhi << ',' << x.rhi << ',' << x.inhi
<< ']';
}
};
using F = pair<bool, int>;
S op(S l, S r) {
return S(l.sz + r.sz, l.sum + r.sum, max(l.sum + r.lhi, l.lhi), max(l.rhi + r.sum, r.rhi),
max({l.inhi, r.inhi, l.rhi + r.lhi}));
}
S reversal(S x) { return S(x.sz, x.sum, x.rhi, x.lhi, x.inhi); }
S mapping(F f, S x) {
if (f.first) {
auto v = f.second;
auto sum = x.sz * v;
return S{x.sz, sum, max(v, sum), max(v, sum), max(v, sum)};
} else {
return x;
}
}
F composition(F fnew, F gold) { return fnew.first ? fnew : gold; }
F id() { return {false, 0}; }
using LCT = lazy_linkcuttree<S, F, op, reversal, mapping, composition, id>;
const int NTRY = 1000;
const int VMAX = 20;
const int QPERTRY = 10000;
const int AMAX = 20;
vector<int> connected_vertices(int N, int r, const vector<unordered_set<int>> &to) {
vector<int> visited(N);
vector<int> ret, tmp{r};
while (tmp.size()) {
int now = tmp.back();
tmp.pop_back();
ret.push_back(now);
visited[now] = 1;
for (auto nxt : to[now]) {
if (!visited[nxt]) tmp.push_back(nxt);
}
}
return ret;
}
vector<int> get_rev_path(int s, int t, int prv, const vector<unordered_set<int>> &to) {
if (s == t) return {s};
for (auto nxt : to[s]) {
if (nxt == prv) continue;
auto v = get_rev_path(nxt, t, s, to);
if (v.size()) {
v.push_back(s);
return v;
}
}
return {};
}
int gen_rand_a() { return rand_int() % (AMAX * 2 + 1) - AMAX; }
int main() {
for (int ntry = 0; ntry < NTRY; ntry++) {
const int N = 2 + rand_int() % (VMAX - 1);
vector<S> A(N);
LCT tree;
vector<LCT::Node *> nodes;
for (int i = 0; i < N; i++) {
A[i] = gen_rand_a();
nodes.push_back(tree.make_node(A[i]));
}
vector<pair<int, int>> edges;
vector<unordered_set<int>> to(N);
auto try_to_add_edge = [&]() {
int a = rand_int() % N;
vector<int> is_cmp(N, 1);
for (auto i : connected_vertices(N, a, to)) is_cmp[i] = 0;
vector<int> cmp;
for (int i = 0; i < N; i++) {
if (is_cmp[i]) cmp.push_back(i);
}
if (cmp.empty()) return;
int b = cmp[rand_int() % cmp.size()];
edges.emplace_back(a, b);
to[a].insert(b), to[b].insert(a);
tree.link(nodes[a], nodes[b]);
};
for (int i = 0; i < N / 2; i++) try_to_add_edge();
for (int q = 0; q < QPERTRY; q++) {
const int tp = rand_int() % 6;
if (tp == 0) {
// cut() if possible
if (edges.empty()) continue;
int e = rand_int() % edges.size();
int a = edges[e].first, b = edges[e].second;
edges.erase(edges.begin() + e);
to[a].erase(b), to[b].erase(a);
tree.cut(nodes[a], nodes[b]);
} else if (tp == 1) {
// link() if possible
try_to_add_edge();
} else if (tp == 2) {
// apply()
const int u = rand_int() % N;
auto conn = connected_vertices(N, u, to);
int v = conn[rand_int() % conn.size()];
const auto a = gen_rand_a();
tree.apply(nodes[u], nodes[v], {true, a});
for (auto i : get_rev_path(u, v, -1, to)) A[i] = a;
} else if (tp == 3) {
// prod()
const int u = rand_int() % N;
auto conn = connected_vertices(N, u, to);
int v = conn[rand_int() % conn.size()];
S ret1 = tree.prod(nodes[u], nodes[v]);
auto ret2 = S(A[u]);
for (auto i : get_rev_path(v, u, -1, to)) {
if (i != u) ret2 = op(ret2, A[i]);
}
assert(ret1 == ret2);
} else if (tp == 4) {
// set()
const int u = rand_int() % N;
const auto a = gen_rand_a();
tree.set(nodes[u], a);
A[u] = a;
} else if (tp == 5) {
// get()
const int u = rand_int() % N;
const S a = tree.get(nodes[u]);
assert(a == A[u]);
} else {
exit(8);
}
}
}
puts("Hello World");
}
#line 1 "data_structure/test/link_cut_tree.noncommutative2.stress.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A" // DUMMY
#line 2 "data_structure/link_cut_tree.hpp"
// CUT begin
// Link-Cut Tree
// Reference:
// - https://www.slideshare.net/iwiwi/2-12188845
// - https://ei1333.github.io/library/structure/lct/link-cut-tree-lazy-path.cpp
template <class S, class F, S (*op)(S, S), S (*reversal)(S), S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
class lazy_linkcuttree {
public:
struct Node {
Node *l, *r, *p;
S d, sum;
F lz;
bool is_reversed;
int sz;
Node(S val)
: l(nullptr), r(nullptr), p(nullptr), d(val), sum(val), lz(id()), is_reversed(false),
sz(1) {}
bool is_root() const { return !p || (p->l != this and p->r != this); }
template <class OStream> friend OStream &operator<<(OStream &os, const Node &n) {
os << '[';
if (n.l) os << *(n.l) << ',';
os << n.d << ',';
if (n.r) os << *(n.r);
return os << ']';
}
};
protected:
void update(Node *t) {
if (t == nullptr) return;
t->sz = 1;
t->sum = t->d;
if (t->l) {
t->sz += t->l->sz;
t->sum = op(t->l->sum, t->sum);
}
if (t->r) {
t->sz += t->r->sz;
t->sum = op(t->sum, t->r->sum);
}
}
void all_apply(Node *a, F b) {
a->d = mapping(b, a->d);
a->sum = mapping(b, a->sum);
a->lz = composition(b, a->lz);
}
void _toggle(Node *t) {
auto tmp = t->l;
t->l = t->r, t->r = tmp;
t->sum = reversal(t->sum);
t->is_reversed ^= true;
}
void push(Node *&t) {
if (t->lz != id()) {
if (t->l) all_apply(t->l, t->lz);
if (t->r) all_apply(t->r, t->lz);
t->lz = id();
}
if (t->is_reversed) {
if (t->l) _toggle(t->l);
if (t->r) _toggle(t->r);
t->is_reversed = false;
}
}
void _rot_r(Node *t) {
Node *x = t->p, *y = x->p;
if ((x->l = t->r)) t->r->p = x;
t->r = x, x->p = t;
update(x), update(t);
if ((t->p = y)) {
if (y->l == x) y->l = t;
if (y->r == x) y->r = t;
update(y);
}
}
void _rot_l(Node *t) {
Node *x = t->p, *y = x->p;
if ((x->r = t->l)) t->l->p = x;
t->l = x, x->p = t;
update(x), update(t);
if ((t->p = y)) {
if (y->l == x) y->l = t;
if (y->r == x) y->r = t;
update(y);
}
}
void _splay(Node *t) {
push(t);
while (!t->is_root()) {
Node *q = t->p;
if (q->is_root()) {
push(q), push(t);
if (q->l == t)
_rot_r(t);
else
_rot_l(t);
} else {
Node *r = q->p;
push(r), push(q), push(t);
if (r->l == q) {
if (q->l == t)
_rot_r(q), _rot_r(t);
else
_rot_l(t), _rot_r(t);
} else {
if (q->r == t)
_rot_l(q), _rot_l(t);
else
_rot_r(t), _rot_l(t);
}
}
}
}
public:
[[nodiscard]] Node *make_node(S val) { return new Node(val); }
void evert(Node *t) { expose(t), _toggle(t), push(t); }
Node *expose(Node *t) {
Node *rp = nullptr;
for (Node *cur = t; cur; cur = cur->p) {
_splay(cur);
cur->r = rp;
update(cur);
rp = cur;
}
_splay(t);
return rp;
}
void link(Node *chi, Node *par) {
evert(chi);
expose(par);
chi->p = par;
par->r = chi;
update(par);
}
void cut(Node *chi) {
expose(chi);
Node *par = chi->l;
chi->l = nullptr;
update(chi);
par->p = nullptr;
}
void cut(Node *u, Node *v) { evert(u), cut(v); }
Node *lca(Node *u, Node *v) { return expose(u), expose(v); }
void set(Node *t, S x) { expose(t), t->d = x, update(t); }
S get(Node *t) { return expose(t), t->d; }
void apply(Node *u, Node *v, const F &x) {
evert(u);
expose(v);
all_apply(v, x);
push(v);
}
S prod(Node *u, Node *v) {
evert(u);
expose(v);
return v->sum;
}
Node *kth_parent(Node *t, int k) {
expose(t);
while (t) {
push(t);
if (t->r and t->r->sz > k) {
t = t->r;
} else {
if (t->r) k -= t->r->sz;
if (k == 0) return t;
k--;
t = t->l;
}
}
return nullptr;
}
bool is_connected(Node *u, Node *v) {
expose(u), expose(v);
return u == v or u->p;
}
};
/* example usage:
struct S {
int sz, sum, lhi, rhi, inhi;
S(int x) : sz(1), sum(x), lhi(x), rhi(x), inhi(x) {}
S(int sz_, int sum_, int lhi_, int rhi_, int inhi_)
: sz(sz_), sum(sum_), lhi(lhi_), rhi(rhi_), inhi(inhi_) {}
};
using F = pair<bool, int>;
S op(S l, S r) {
return S(l.sz + r.sz, l.sum + r.sum, max(l.sum + r.lhi, l.lhi), max(l.rhi + r.sum, r.rhi),
max<int>({l.inhi, r.inhi, l.rhi + r.lhi}));
}
S reversal(S x) { return S(x.sz, x.sum, x.rhi, x.lhi, x.inhi); }
S mapping(F f, S x) {
if (f.first) {
auto v = f.second;
auto sum = x.sz * v;
return S{x.sz, sum, max(v, sum), max(v, sum), max(v, sum)};
} else {
return x;
}
}
F composition(F fnew, F gold) { return fnew.first ? fnew : gold; }
F id() { return {false, 0}; }
using LCT = lazy_linkcuttree<S, F, op, reversal, mapping, composition, id>;
vector<LCT::Node*> vs;
*/
#line 2 "random/xorshift.hpp"
#include <cstdint>
// CUT begin
uint32_t rand_int() // XorShift random integer generator
{
static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
uint32_t t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }
#line 4 "data_structure/test/link_cut_tree.noncommutative2.stress.test.cpp"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
struct S {
int sz, sum, lhi, rhi, inhi;
S() = default;
S(int x) : sz(1), sum(x), lhi(x), rhi(x), inhi(x) {}
S(int sz_, int sum_, int lhi_, int rhi_, int inhi_)
: sz(sz_), sum(sum_), lhi(lhi_), rhi(rhi_), inhi(inhi_) {}
bool operator==(const S &x) const {
return sz == x.sz and sum == x.sum and lhi == x.lhi and rhi == x.rhi and inhi == x.inhi;
}
template <class OStream> friend OStream &operator<<(OStream &os, const S &x) {
return os << '[' << x.sz << ',' << x.sum << ',' << x.lhi << ',' << x.rhi << ',' << x.inhi
<< ']';
}
};
using F = pair<bool, int>;
S op(S l, S r) {
return S(l.sz + r.sz, l.sum + r.sum, max(l.sum + r.lhi, l.lhi), max(l.rhi + r.sum, r.rhi),
max({l.inhi, r.inhi, l.rhi + r.lhi}));
}
S reversal(S x) { return S(x.sz, x.sum, x.rhi, x.lhi, x.inhi); }
S mapping(F f, S x) {
if (f.first) {
auto v = f.second;
auto sum = x.sz * v;
return S{x.sz, sum, max(v, sum), max(v, sum), max(v, sum)};
} else {
return x;
}
}
F composition(F fnew, F gold) { return fnew.first ? fnew : gold; }
F id() { return {false, 0}; }
using LCT = lazy_linkcuttree<S, F, op, reversal, mapping, composition, id>;
const int NTRY = 1000;
const int VMAX = 20;
const int QPERTRY = 10000;
const int AMAX = 20;
vector<int> connected_vertices(int N, int r, const vector<unordered_set<int>> &to) {
vector<int> visited(N);
vector<int> ret, tmp{r};
while (tmp.size()) {
int now = tmp.back();
tmp.pop_back();
ret.push_back(now);
visited[now] = 1;
for (auto nxt : to[now]) {
if (!visited[nxt]) tmp.push_back(nxt);
}
}
return ret;
}
vector<int> get_rev_path(int s, int t, int prv, const vector<unordered_set<int>> &to) {
if (s == t) return {s};
for (auto nxt : to[s]) {
if (nxt == prv) continue;
auto v = get_rev_path(nxt, t, s, to);
if (v.size()) {
v.push_back(s);
return v;
}
}
return {};
}
int gen_rand_a() { return rand_int() % (AMAX * 2 + 1) - AMAX; }
int main() {
for (int ntry = 0; ntry < NTRY; ntry++) {
const int N = 2 + rand_int() % (VMAX - 1);
vector<S> A(N);
LCT tree;
vector<LCT::Node *> nodes;
for (int i = 0; i < N; i++) {
A[i] = gen_rand_a();
nodes.push_back(tree.make_node(A[i]));
}
vector<pair<int, int>> edges;
vector<unordered_set<int>> to(N);
auto try_to_add_edge = [&]() {
int a = rand_int() % N;
vector<int> is_cmp(N, 1);
for (auto i : connected_vertices(N, a, to)) is_cmp[i] = 0;
vector<int> cmp;
for (int i = 0; i < N; i++) {
if (is_cmp[i]) cmp.push_back(i);
}
if (cmp.empty()) return;
int b = cmp[rand_int() % cmp.size()];
edges.emplace_back(a, b);
to[a].insert(b), to[b].insert(a);
tree.link(nodes[a], nodes[b]);
};
for (int i = 0; i < N / 2; i++) try_to_add_edge();
for (int q = 0; q < QPERTRY; q++) {
const int tp = rand_int() % 6;
if (tp == 0) {
// cut() if possible
if (edges.empty()) continue;
int e = rand_int() % edges.size();
int a = edges[e].first, b = edges[e].second;
edges.erase(edges.begin() + e);
to[a].erase(b), to[b].erase(a);
tree.cut(nodes[a], nodes[b]);
} else if (tp == 1) {
// link() if possible
try_to_add_edge();
} else if (tp == 2) {
// apply()
const int u = rand_int() % N;
auto conn = connected_vertices(N, u, to);
int v = conn[rand_int() % conn.size()];
const auto a = gen_rand_a();
tree.apply(nodes[u], nodes[v], {true, a});
for (auto i : get_rev_path(u, v, -1, to)) A[i] = a;
} else if (tp == 3) {
// prod()
const int u = rand_int() % N;
auto conn = connected_vertices(N, u, to);
int v = conn[rand_int() % conn.size()];
S ret1 = tree.prod(nodes[u], nodes[v]);
auto ret2 = S(A[u]);
for (auto i : get_rev_path(v, u, -1, to)) {
if (i != u) ret2 = op(ret2, A[i]);
}
assert(ret1 == ret2);
} else if (tp == 4) {
// set()
const int u = rand_int() % N;
const auto a = gen_rand_a();
tree.set(nodes[u], a);
A[u] = a;
} else if (tp == 5) {
// get()
const int u = rand_int() % N;
const S a = tree.get(nodes[u]);
assert(a == A[u]);
} else {
exit(8);
}
}
}
puts("Hello World");
}