cplib-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub hitonanode/cplib-cpp

:heavy_check_mark: data_structure/test/lazy_rbst.stress.test.cpp

Depends on

Code

#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A" // DUMMY
#include "../lazy_rbst.hpp"
#include "../../random/xorshift.hpp"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <utility>
#include <vector>
using namespace std;

struct S {
    long long lsum; // a[0] + 2 * a[1] + 3 * a[2] + ... + n * a[n - 1]
    long long rsum; // n * a[0] + (n - 1) * a[1] + ... + a[n - 1]
    long long sum;
    int sz;
};
S genS(long long x) { return S{x, x, x, 1}; }

S op(S l, S r) {
    return {l.lsum + r.lsum + l.sz * r.sum, l.rsum + r.rsum + r.sz * l.sum, l.sum + r.sum,
            l.sz + r.sz};
}
using F = std::pair<bool, long long>;
S reversal(S x) { return {x.rsum, x.lsum, x.sum, x.sz}; }
S mapping(F f, S x) {
    if (!f.first) return x;
    auto add = f.second * x.sz * (x.sz + 1) / 2;
    return {x.lsum + add, x.rsum + add, x.sum + f.second * x.sz, x.sz};
}
F composition(F fnew, F gold) {
    if (!fnew.first) return gold;
    if (!gold.first) return fnew;
    return {true, fnew.second + gold.second};
}
F id() { return {false, 0}; }

long long y;
bool g_binsearch(S x) { return x.lsum <= y; }

void test_lazy_rbst(int hi) {
    auto rndx = [&hi]() -> long long { return rand_int() % hi; };

    for (int t = 0; t < 1000; t++) {
        lazy_rbst<1100, S, op, F, reversal, mapping, composition, id> rbst;
        auto root = rbst.new_tree();
        vector<long long> simulate;

        auto get_lsum = [&](int l, int r) -> long long {
            long long ret = 0;
            for (int i = l; i < r; i++) ret += simulate[i] * (i - l + 1);
            return ret;
        };

        while (simulate.size() < 50) {
            long long x = rndx();
            simulate.push_back(x);
            rbst.insert(root, simulate.size() - 1, genS(x));
        }
        for (int t = 0; t < 1000; t++) {
            const int choice = rand_int() % 8;

            if (choice == 0) {
                // Insert
                int pos = rand_int() % (simulate.size() + 1);
                long long x = rndx();
                simulate.insert(simulate.begin() + pos, x);
                rbst.insert(root, pos, genS(x));
            } else if (choice == 1) {
                // Erase
                if (simulate.empty()) continue;
                int pos = rand_int() % simulate.size();
                simulate.erase(simulate.begin() + pos);
                rbst.erase(root, pos);
            } else if (choice == 2) {
                // Set
                if (simulate.empty()) continue;
                int pos = rand_int() % simulate.size();
                long long x = rndx();
                simulate[pos] = x;
                rbst.set(root, pos, genS(x));
            } else if (choice == 3) {
                // apply
                int l = rand_int() % (simulate.size() + 1), r = rand_int() % (simulate.size() + 1);
                if (l > r) swap(l, r);
                long long x = rndx();
                for (int i = l; i < r; i++) simulate[i] += x;
                rbst.apply(root, l, r, {true, x});
            } else if (choice == 4) {
                // prod
                if (simulate.empty()) continue;
                int l = rand_int() % simulate.size(), r = rand_int() % simulate.size();
                if (l > r) swap(l, r);
                r++;
                S prod = rbst.prod(root, l, r);
                long long lsum = 0, rsum = 0, sum = 0;
                int sz = 0;
                for (int i = l; i < r; i++) {
                    lsum += simulate[i] * (i - l + 1);
                    rsum += simulate[i] * (r - i);
                    sum += simulate[i];
                    sz++;
                }
                assert(prod.lsum == lsum and prod.rsum == rsum and prod.sum == sum and prod.sz == sz);
            } else if (choice == 5) {
                // max_right
                if (simulate.empty()) continue;
                int l = rand_int() % simulate.size(), r = rand_int() % (simulate.size() + 1);
                if (l > r) swap(l, r);
                // l から始めて答が r あたりになりそうなクエリを作る
                y = get_lsum(l, r);
                while (r < int(simulate.size()) and simulate[r] == 0) r++;
                auto p = rbst.split(root, l);
                assert(rbst.max_right(p.second, S{0, 0, 0, 0}, g_binsearch) == r - l);
                root = rbst.merge(p.first, p.second);
            } else if (choice == 6) {
                if (simulate.empty()) continue;
                // min_left
                int l = rand_int() % (simulate.size() + 1), r = rand_int() % simulate.size() + 1;
                if (l > r) swap(l, r);
                // r から始めて答が l あたりになりそうなクエリを作る
                y = get_lsum(l, r);
                while (y == 0 and l and simulate[l - 1] == 0) l--;
                auto p = rbst.split(root, r);
                assert(rbst.min_left(p.first, S{0, 0, 0, 0}, g_binsearch) == l);
                root = rbst.merge(p.first, p.second);
            } else if (choice == 7) {
                // reverse
                if (simulate.empty()) continue;
                int l = rand_int() % simulate.size(), r = rand_int() % simulate.size();
                if (l > r) swap(l, r);
                r++;
                reverse(simulate.begin() + l, simulate.begin() + r);
                rbst.reverse(root, l, r);
            } else {
                throw;
            }
        }
        vector<S> ret;
        rbst.dump(root, ret);
        for (int i = 0; i < int(simulate.size()); i++) assert(simulate[i] == ret[i].sum);
    }
}

int main() {
    test_lazy_rbst(2);
    test_lazy_rbst(3);
    test_lazy_rbst(10);
    cout << "Hello World\n";
}
#line 1 "data_structure/test/lazy_rbst.stress.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A" // DUMMY
#line 2 "data_structure/lazy_rbst.hpp"
#include <array>
#include <cassert>
#include <chrono>
#include <utility>
#include <vector>

// Lazy randomized binary search tree
template <int LEN, class S, S (*op)(S, S), class F, S (*reversal)(S), S (*mapping)(F, S),
          F (*composition)(F, F), F (*id)()>
struct lazy_rbst {
    // Do your RuBeSTy! ⌒°( ・ω・)°⌒
    inline uint32_t _rand() { // XorShift
        static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
        uint32_t t = x ^ (x << 11);
        x = y;
        y = z;
        z = w;
        return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
    }

    struct Node {
        Node *l, *r;
        S val, sum;
        F lz;
        bool is_reversed;
        int sz;
        Node(const S &v)
            : l(nullptr), r(nullptr), val(v), sum(v), lz(id()), is_reversed(false), sz(1) {}
        Node() : l(nullptr), r(nullptr), lz(id()), is_reversed(false), sz(0) {}
        template <class OStream> friend OStream &operator<<(OStream &os, const Node &n) {
            os << '[';
            if (n.l) os << *(n.l) << ',';
            os << n.val << ',';
            if (n.r) os << *(n.r);
            return os << ']';
        }
    };
    using Nptr = Node *;
    std::array<Node, LEN> data;
    int d_ptr;

    int size(Nptr t) const { return t != nullptr ? t->sz : 0; }

    lazy_rbst() : d_ptr(0) {}

protected:
    Nptr update(Nptr t) {
        t->sz = 1;
        t->sum = t->val;
        if (t->l) {
            t->sz += t->l->sz;
            t->sum = op(t->l->sum, t->sum);
        }
        if (t->r) {
            t->sz += t->r->sz;
            t->sum = op(t->sum, t->r->sum);
        }
        return t;
    }

    void all_apply(Nptr t, F f) {
        t->val = mapping(f, t->val);
        t->sum = mapping(f, t->sum);
        t->lz = composition(f, t->lz);
    }
    void _toggle(Nptr t) {
        auto tmp = t->l;
        t->l = t->r, t->r = tmp;
        t->sum = reversal(t->sum);
        t->is_reversed ^= true;
    }

    void push(Nptr &t) {
        _duplicate_node(t);
        if (t->lz != id()) {
            if (t->l) {
                _duplicate_node(t->l);
                all_apply(t->l, t->lz);
            }
            if (t->r) {
                _duplicate_node(t->r);
                all_apply(t->r, t->lz);
            }
            t->lz = id();
        }
        if (t->is_reversed) {
            if (t->l) _toggle(t->l);
            if (t->r) _toggle(t->r);
            t->is_reversed = false;
        }
    }

    virtual void _duplicate_node(Nptr &) {}

    Nptr _make_node(const S &val) {
        if (d_ptr >= LEN) throw;
        return &(data[d_ptr++] = Node(val));
    }

public:
    Nptr new_tree() { return nullptr; } // 新たな木を作成

    int mem_used() const { return d_ptr; }
    bool empty(Nptr t) const { return t == nullptr; }

    // lとrをrootとする木同士を結合して,新たなrootを返す
    Nptr merge(Nptr l, Nptr r) {
        if (l == nullptr or r == nullptr) return l != nullptr ? l : r;
        if (_rand() % uint32_t(l->sz + r->sz) < uint32_t(l->sz)) {
            push(l);
            l->r = merge(l->r, r);
            return update(l);
        } else {
            push(r);
            r->l = merge(l, r->l);
            return update(r);
        }
    }

    // [0, k)の木と[k, root->size())の木に分けて各root
    // (部分木の要素数が0ならnullptr)を返す
    std::pair<Nptr, Nptr> split(Nptr &root, int k) { // rootの子孫からあとk個欲しい
        if (root == nullptr) return std::make_pair(nullptr, nullptr);
        push(root);
        if (k <= size(root->l)) { // leftからk個拾える
            auto p = split(root->l, k);
            root->l = p.second;
            return std::make_pair(p.first, update(root));
        } else {
            auto p = split(root->r, k - size(root->l) - 1);
            root->r = p.first;
            return std::make_pair(update(root), p.second);
        }
    }

    // 0-indexedでarray[pos]の手前に新たな要素 x を挿入する
    void insert(Nptr &root, int pos, const S &x) {
        auto p = split(root, pos);
        root = merge(p.first, merge(_make_node(x), p.second));
    }

    // 0-indexedでarray[pos]を削除する(先頭からpos+1個目の要素)
    void erase(Nptr &root, int pos) {
        auto p = split(root, pos);
        auto p2 = split(p.second, 1);
        root = merge(p.first, p2.second);
    }

    // 1点更新 array[pos].valにupdvalを入れる
    void set(Nptr &root, int pos, const S &x) {
        auto p = split(root, pos);
        auto p2 = split(p.second, 1);
        _duplicate_node(p2.first);
        *p2.first = Node(x);
        root = merge(p.first, merge(p2.first, p2.second));
    }

    // 遅延評価を利用した範囲更新 [l, r)
    void apply(Nptr &root, int l, int r, const F &f) {
        if (l == r) return;
        auto p = split(root, l);
        auto p2 = split(p.second, r - l);
        all_apply(p2.first, f);
        root = merge(p.first, merge(p2.first, p2.second));
    }

    S prod(Nptr &root, int l, int r) {
        assert(l < r);
        auto p = split(root, l);
        auto p2 = split(p.second, r - l);
        if (p2.first != nullptr) push(p2.first);
        S res = p2.first->sum;
        root = merge(p.first, merge(p2.first, p2.second));
        return res;
    }

    // array[pos].valを取得する
    S get(Nptr &root, int pos) { return prod(root, pos, pos + 1); }

    template <bool (*g)(S)> int max_right(Nptr root, const S &e) {
        return max_right(root, e, [](S x) { return g(x); });
    }
    template <class G> int max_right(Nptr root, const S &e, G g) {
        assert(g(e));
        if (root == nullptr) return 0;
        push(root);
        Nptr now = root;
        S prod_now = e;
        int sz = 0;
        while (true) {
            if (now->l != nullptr) {
                push(now->l);
                auto pl = op(prod_now, now->l->sum);
                if (g(pl)) {
                    prod_now = pl;
                    sz += now->l->sz;
                } else {
                    now = now->l;
                    continue;
                }
            }
            auto pl = op(prod_now, now->val);
            if (!g(pl)) return sz;
            prod_now = pl, sz++;
            if (now->r == nullptr) return sz;
            push(now->r);
            now = now->r;
        }
    }

    template <bool (*g)(S)> int min_left(Nptr root, const S &e) {
        return min_left(root, e, [](S x) { return g(x); });
    }
    template <class G> int min_left(Nptr root, const S &e, G g) {
        assert(g(e));
        if (root == nullptr) return 0;
        push(root);
        Nptr now = root;
        S prod_now = e;
        int sz = size(root);
        while (true) {
            if (now->r != nullptr) {
                push(now->r);
                auto pr = op(now->r->sum, prod_now);
                if (g(pr)) {
                    prod_now = pr;
                    sz -= now->r->sz;
                } else {
                    now = now->r;
                    continue;
                }
            }
            auto pr = op(now->val, prod_now);
            if (!g(pr)) return sz;
            prod_now = pr, sz--;
            if (now->l == nullptr) return sz;
            push(now->l);
            now = now->l;
        }
    }

    void reverse(Nptr &root) { _duplicate_node(root), _toggle(root); }
    void reverse(Nptr &root, int l, int r) {
        auto p2 = split(root, r);
        auto p1 = split(p2.first, l);
        reverse(p1.second);
        root = merge(merge(p1.first, p1.second), p2.second);
    }

    // データを壊して新規にinitの内容を詰める
    void assign(Nptr &root, const std::vector<S> &init) {
        int N = init.size();
        root = N ? _assign_range(0, N, init) : new_tree();
    }
    Nptr _assign_range(int l, int r, const std::vector<S> &init) {
        if (r - l == 1) {
            Nptr t = _make_node(init[l]);
            return update(t);
        }
        return merge(_assign_range(l, (l + r) / 2, init), _assign_range((l + r) / 2, r, init));
    }

    // データをvecへ書き出し
    void dump(Nptr &t, std::vector<S> &vec) {
        if (t == nullptr) return;
        push(t);
        dump(t->l, vec);
        vec.push_back(t->val);
        dump(t->r, vec);
    }

    // gc
    void re_alloc(Nptr &root) {
        std::vector<S> mem;
        dump(root, mem);
        d_ptr = 0;
        assign(root, mem);
    }
};

// Persistent lazy randomized binary search tree
// Verified: https://atcoder.jp/contests/arc030/tasks/arc030_4
// CAUTION: https://yosupo.hatenablog.com/entry/2015/10/29/222536
template <int LEN, class S, S (*op)(S, S), class F, S (*reversal)(S), S (*mapping)(F, S),
          F (*composition)(F, F), F (*id)()>
struct persistent_lazy_rbst : lazy_rbst<LEN, S, op, F, reversal, mapping, composition, id> {
    using RBST = lazy_rbst<LEN, S, op, F, reversal, mapping, composition, id>;
    using Node = typename RBST::Node;
    using Nptr = typename RBST::Nptr;
    persistent_lazy_rbst() : RBST() {}

protected:
    void _duplicate_node(Nptr &t) override {
        if (t == nullptr) return;
        if (RBST::d_ptr >= LEN) throw;
        t = &(RBST::data[RBST::d_ptr++] = *t);
    }

public:
    void copy(Nptr &root, int l, int d, int target_l) { // [target_l, )に[l, l+d)の値を入れる
        auto p1 = RBST::split(root, l);
        auto p2 = RBST::split(p1.second, d);
        root = RBST::merge(p1.first, RBST::merge(p2.first, p2.second));
        auto p3 = RBST::split(root, target_l);
        auto p4 = RBST::split(p3.second, d);
        root = RBST::merge(p3.first, RBST::merge(p2.first, p4.second));
    }
};
#line 2 "random/xorshift.hpp"
#include <cstdint>

// CUT begin
uint32_t rand_int() // XorShift random integer generator
{
    static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
    uint32_t t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }
#line 4 "data_structure/test/lazy_rbst.stress.test.cpp"
#include <algorithm>
#line 6 "data_structure/test/lazy_rbst.stress.test.cpp"
#include <iostream>
#line 9 "data_structure/test/lazy_rbst.stress.test.cpp"
using namespace std;

struct S {
    long long lsum; // a[0] + 2 * a[1] + 3 * a[2] + ... + n * a[n - 1]
    long long rsum; // n * a[0] + (n - 1) * a[1] + ... + a[n - 1]
    long long sum;
    int sz;
};
S genS(long long x) { return S{x, x, x, 1}; }

S op(S l, S r) {
    return {l.lsum + r.lsum + l.sz * r.sum, l.rsum + r.rsum + r.sz * l.sum, l.sum + r.sum,
            l.sz + r.sz};
}
using F = std::pair<bool, long long>;
S reversal(S x) { return {x.rsum, x.lsum, x.sum, x.sz}; }
S mapping(F f, S x) {
    if (!f.first) return x;
    auto add = f.second * x.sz * (x.sz + 1) / 2;
    return {x.lsum + add, x.rsum + add, x.sum + f.second * x.sz, x.sz};
}
F composition(F fnew, F gold) {
    if (!fnew.first) return gold;
    if (!gold.first) return fnew;
    return {true, fnew.second + gold.second};
}
F id() { return {false, 0}; }

long long y;
bool g_binsearch(S x) { return x.lsum <= y; }

void test_lazy_rbst(int hi) {
    auto rndx = [&hi]() -> long long { return rand_int() % hi; };

    for (int t = 0; t < 1000; t++) {
        lazy_rbst<1100, S, op, F, reversal, mapping, composition, id> rbst;
        auto root = rbst.new_tree();
        vector<long long> simulate;

        auto get_lsum = [&](int l, int r) -> long long {
            long long ret = 0;
            for (int i = l; i < r; i++) ret += simulate[i] * (i - l + 1);
            return ret;
        };

        while (simulate.size() < 50) {
            long long x = rndx();
            simulate.push_back(x);
            rbst.insert(root, simulate.size() - 1, genS(x));
        }
        for (int t = 0; t < 1000; t++) {
            const int choice = rand_int() % 8;

            if (choice == 0) {
                // Insert
                int pos = rand_int() % (simulate.size() + 1);
                long long x = rndx();
                simulate.insert(simulate.begin() + pos, x);
                rbst.insert(root, pos, genS(x));
            } else if (choice == 1) {
                // Erase
                if (simulate.empty()) continue;
                int pos = rand_int() % simulate.size();
                simulate.erase(simulate.begin() + pos);
                rbst.erase(root, pos);
            } else if (choice == 2) {
                // Set
                if (simulate.empty()) continue;
                int pos = rand_int() % simulate.size();
                long long x = rndx();
                simulate[pos] = x;
                rbst.set(root, pos, genS(x));
            } else if (choice == 3) {
                // apply
                int l = rand_int() % (simulate.size() + 1), r = rand_int() % (simulate.size() + 1);
                if (l > r) swap(l, r);
                long long x = rndx();
                for (int i = l; i < r; i++) simulate[i] += x;
                rbst.apply(root, l, r, {true, x});
            } else if (choice == 4) {
                // prod
                if (simulate.empty()) continue;
                int l = rand_int() % simulate.size(), r = rand_int() % simulate.size();
                if (l > r) swap(l, r);
                r++;
                S prod = rbst.prod(root, l, r);
                long long lsum = 0, rsum = 0, sum = 0;
                int sz = 0;
                for (int i = l; i < r; i++) {
                    lsum += simulate[i] * (i - l + 1);
                    rsum += simulate[i] * (r - i);
                    sum += simulate[i];
                    sz++;
                }
                assert(prod.lsum == lsum and prod.rsum == rsum and prod.sum == sum and prod.sz == sz);
            } else if (choice == 5) {
                // max_right
                if (simulate.empty()) continue;
                int l = rand_int() % simulate.size(), r = rand_int() % (simulate.size() + 1);
                if (l > r) swap(l, r);
                // l から始めて答が r あたりになりそうなクエリを作る
                y = get_lsum(l, r);
                while (r < int(simulate.size()) and simulate[r] == 0) r++;
                auto p = rbst.split(root, l);
                assert(rbst.max_right(p.second, S{0, 0, 0, 0}, g_binsearch) == r - l);
                root = rbst.merge(p.first, p.second);
            } else if (choice == 6) {
                if (simulate.empty()) continue;
                // min_left
                int l = rand_int() % (simulate.size() + 1), r = rand_int() % simulate.size() + 1;
                if (l > r) swap(l, r);
                // r から始めて答が l あたりになりそうなクエリを作る
                y = get_lsum(l, r);
                while (y == 0 and l and simulate[l - 1] == 0) l--;
                auto p = rbst.split(root, r);
                assert(rbst.min_left(p.first, S{0, 0, 0, 0}, g_binsearch) == l);
                root = rbst.merge(p.first, p.second);
            } else if (choice == 7) {
                // reverse
                if (simulate.empty()) continue;
                int l = rand_int() % simulate.size(), r = rand_int() % simulate.size();
                if (l > r) swap(l, r);
                r++;
                reverse(simulate.begin() + l, simulate.begin() + r);
                rbst.reverse(root, l, r);
            } else {
                throw;
            }
        }
        vector<S> ret;
        rbst.dump(root, ret);
        for (int i = 0; i < int(simulate.size()); i++) assert(simulate[i] == ret[i].sum);
    }
}

int main() {
    test_lazy_rbst(2);
    test_lazy_rbst(3);
    test_lazy_rbst(10);
    cout << "Hello World\n";
}
Back to top page