This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub hitonanode/cplib-cpp
#include "data_structure/persistent_queue.hpp"
#pragma once #include <array> #include <cassert> #include <utility> #include <vector> // CUT begin // Fully persistent queue template <typename T, int D> struct persistent_queue { int now; std::vector<T> data; // Elements on each node of tree std::vector<std::array<int, D>> par; // binary-lifted parents std::vector<int> back_id; // back_id[t] = leaf id of the tree at time t std::vector<int> size; // size[t] = size of the queue at time t persistent_queue() : now(0), data(1), par(1), back_id(1, 0), size(1, 0) {} // Complexity: O(lgD) // return: (curret_time, popped element) std::pair<int, T> pop(int t) { now++; assert(now < 1 << (D + 1)); int r = back_id[t], len = size[t] - 1; back_id.emplace_back(r), size.emplace_back(len); for (int d = 0; d < D; d++) if ((len >> d) & 1) r = par[r][d]; return std::make_pair(now, data[r]); } // Complexity: O(lgD) // return: curret_time int push(int t, const T &dat) { now++; assert(now < 1 << (D + 1)); int newid = data.size(); data.emplace_back(dat); par.push_back({}), par.back()[0] = back_id[t]; back_id.emplace_back(newid), size.emplace_back(size[t] + 1); for (int d = 1; d < D; d++) par[newid][d] = par[par[newid][d - 1]][d - 1]; return now; } };
#line 2 "data_structure/persistent_queue.hpp" #include <array> #include <cassert> #include <utility> #include <vector> // CUT begin // Fully persistent queue template <typename T, int D> struct persistent_queue { int now; std::vector<T> data; // Elements on each node of tree std::vector<std::array<int, D>> par; // binary-lifted parents std::vector<int> back_id; // back_id[t] = leaf id of the tree at time t std::vector<int> size; // size[t] = size of the queue at time t persistent_queue() : now(0), data(1), par(1), back_id(1, 0), size(1, 0) {} // Complexity: O(lgD) // return: (curret_time, popped element) std::pair<int, T> pop(int t) { now++; assert(now < 1 << (D + 1)); int r = back_id[t], len = size[t] - 1; back_id.emplace_back(r), size.emplace_back(len); for (int d = 0; d < D; d++) if ((len >> d) & 1) r = par[r][d]; return std::make_pair(now, data[r]); } // Complexity: O(lgD) // return: curret_time int push(int t, const T &dat) { now++; assert(now < 1 << (D + 1)); int newid = data.size(); data.emplace_back(dat); par.push_back({}), par.back()[0] = back_id[t]; back_id.emplace_back(newid), size.emplace_back(size[t] + 1); for (int d = 1; d < D; d++) par[newid][d] = par[par[newid][d - 1]][d - 1]; return now; } };