This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub hitonanode/cplib-cpp
#include "convolution/multivar_ntt.hpp"
Library Checker: Multivariate Convolution
$\displaystyle f(x_1, x_2, \dots, x_K), \ g(x_1, x_2, \dots, x_K) $
に対して,
$\displaystyle f \cdot g \bmod (x_1^{N_1} x_2^{N_2} \dots x_K^{N_K}) $
を計算(線形畳み込み,「はみ出し」分は無視).
参考
popcount
#pragma once #include "ntt.hpp" #include <cassert> #include <numeric> #include <vector> // CUT begin // Multivariate convolution (Linear, overflow cutoff) // Complexity: $O(kN \log N + k^2 N)$ // Note that the vectors store the infomation in **column-major order** // Implementation idea: https://rushcheyo.blog.uoj.ac/blog/6547 // Details of my implementation: https://hitonanode.github.io/cplib-cpp/convolution/multivar_ntt.hpp template <typename MODINT> struct multivar_ntt { int K, N, fftlen; std::vector<int> dim; std::vector<int> chi; MODINT invfftlen; private: void _initialize(const std::vector<int> &dim_) { dim = dim_; K = dim_.size(); N = std::accumulate(dim_.begin(), dim_.end(), 1, [&](int l, int r) { return l * r; }); fftlen = 1; while (fftlen < N * 2) fftlen <<= 1; invfftlen = MODINT(fftlen).inv(); chi.resize(fftlen); int t = 1; for (auto d : dim_) { t *= d; for (int s = t; s < fftlen; s += t) chi[s] += 1; } for (int i = 0; i + 1 < fftlen; i++) { chi[i + 1] += chi[i]; if (chi[i + 1] >= K) chi[i + 1] -= K; } } std::vector<MODINT> _convolve(const std::vector<MODINT> &f, const std::vector<MODINT> &g) const { assert(int(f.size()) == N); assert(int(g.size()) == N); if (dim.empty()) return {f[0] * g[0]}; std::vector<std::vector<MODINT>> fex(K, std::vector<MODINT>(fftlen)), gex(K, std::vector<MODINT>(fftlen)); for (int i = 0; i < N; i++) fex[chi[i]][i] = f[i], gex[chi[i]][i] = g[i]; for (auto &vec : fex) ntt(vec, false); for (auto &vec : gex) ntt(vec, false); std::vector<std::vector<MODINT>> hex(K, std::vector<MODINT>(fftlen)); for (int df = 0; df < K; df++) { for (int dg = 0; dg < K; dg++) { int dh = (df + dg < K) ? df + dg : df + dg - K; for (int i = 0; i < fftlen; i++) hex[dh][i] += fex[df][i] * gex[dg][i]; } } for (auto &vec : hex) ntt(vec, true); std::vector<MODINT> ret(N); for (int i = 0; i < N; i++) ret[i] = hex[chi[i]][i]; return ret; } public: multivar_ntt(const std::vector<int> &dim_) { _initialize(dim_); } std::vector<MODINT> operator()(const std::vector<MODINT> &f, const std::vector<MODINT> &g) const { return _convolve(f, g); } };
#line 2 "modint.hpp" #include <cassert> #include <iostream> #include <set> #include <vector> template <int md> struct ModInt { using lint = long long; constexpr static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set<int> fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val_; int val() const noexcept { return val_; } constexpr ModInt() : val_(0) {} constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; } constexpr ModInt(lint v) { _setval(v % md + md); } constexpr explicit operator bool() const { return val_ != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val_ + x.val_); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val_ - x.val_ + md); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.val_ % md); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.inv().val() % md); } constexpr ModInt operator-() const { return ModInt()._setval(md - val_); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; } constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; } constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; } constexpr bool operator<(const ModInt &x) const { return val_ < x.val_; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val_; } constexpr ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static constexpr int cache_limit = std::min(md, 1 << 21); static std::vector<ModInt> facs, facinvs, invs; constexpr static void _precalculation(int N) { const int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } constexpr ModInt inv() const { if (this->val_ < cache_limit) { if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0}; while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val_]; } else { return this->pow(md - 2); } } constexpr ModInt fac() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val_]; } constexpr ModInt facinv() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val_]; } constexpr ModInt doublefac() const { lint k = (this->val_ + 1) / 2; return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } constexpr ModInt nCr(int r) const { if (r < 0 or this->val_ < r) return ModInt(0); return this->fac() * (*this - r).facinv() * ModInt(r).facinv(); } constexpr ModInt nPr(int r) const { if (r < 0 or this->val_ < r) return ModInt(0); return this->fac() * (*this - r).facinv(); } static ModInt binom(int n, int r) { static long long bruteforce_times = 0; if (r < 0 or n < r) return ModInt(0); if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r); r = std::min(r, n - r); ModInt ret = ModInt(r).facinv(); for (int i = 0; i < r; ++i) ret *= n - i; bruteforce_times += r; return ret; } // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!) // Complexity: O(sum(ks)) template <class Vec> static ModInt multinomial(const Vec &ks) { ModInt ret{1}; int sum = 0; for (int k : ks) { assert(k >= 0); ret *= ModInt(k).facinv(), sum += k; } return ret * ModInt(sum).fac(); } // Catalan number, C_n = binom(2n, n) / (n + 1) // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ... // https://oeis.org/A000108 // Complexity: O(n) static ModInt catalan(int n) { if (n < 0) return ModInt(0); return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv(); } ModInt sqrt() const { if (val_ == 0) return 0; if (md == 2) return val_; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val_, md - x.val_)); } }; template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0}; using ModInt998244353 = ModInt<998244353>; // using mint = ModInt<998244353>; // using mint = ModInt<1000000007>; #line 3 "convolution/ntt.hpp" #include <algorithm> #include <array> #line 7 "convolution/ntt.hpp" #include <tuple> #line 9 "convolution/ntt.hpp" // CUT begin // Integer convolution for arbitrary mod // with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class. // We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`. // input: a (size: n), b (size: m) // return: vector (size: n + m - 1) template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner); constexpr int nttprimes[3] = {998244353, 167772161, 469762049}; // Integer FFT (Fast Fourier Transform) for ModInt class // (Also known as Number Theoretic Transform, NTT) // is_inverse: inverse transform // ** Input size must be 2^n ** template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) { int n = a.size(); if (n == 1) return; static const int mod = MODINT::mod(); static const MODINT root = MODINT::get_primitive_root(); assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0); static std::vector<MODINT> w{1}, iw{1}; for (int m = w.size(); m < n / 2; m *= 2) { MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw; w.resize(m * 2), iw.resize(m * 2); for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv; } if (!is_inverse) { for (int m = n; m >>= 1;) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { MODINT x = a[i], y = a[i + m] * w[k]; a[i] = x + y, a[i + m] = x - y; } } } } else { for (int m = 1; m < n; m *= 2) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { MODINT x = a[i], y = a[i + m]; a[i] = x + y, a[i + m] = (x - y) * iw[k]; } } } int n_inv = MODINT(n).inv().val(); for (auto &v : a) v *= n_inv; } } template <int MOD> std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) { int sz = a.size(); assert(a.size() == b.size() and __builtin_popcount(sz) == 1); std::vector<ModInt<MOD>> ap(sz), bp(sz); for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i]; ntt(ap, false); if (a == b) bp = ap; else ntt(bp, false); for (int i = 0; i < sz; i++) ap[i] *= bp[i]; ntt(ap, true); return ap; } long long garner_ntt_(int r0, int r1, int r2, int mod) { using mint2 = ModInt<nttprimes[2]>; static const long long m01 = 1LL * nttprimes[0] * nttprimes[1]; static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val(); static const long long m01_inv_m2 = mint2(m01).inv().val(); int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1]; auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2; return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod; } template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) { if (a.empty() or b.empty()) return {}; int sz = 1, n = a.size(), m = b.size(); while (sz < n + m) sz <<= 1; if (sz <= 16) { std::vector<MODINT> ret(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j]; } return ret; } int mod = MODINT::mod(); if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) { a.resize(sz), b.resize(sz); if (a == b) { ntt(a, false); b = a; } else { ntt(a, false), ntt(b, false); } for (int i = 0; i < sz; i++) a[i] *= b[i]; ntt(a, true); a.resize(n + m - 1); } else { std::vector<int> ai(sz), bi(sz); for (int i = 0; i < n; i++) ai[i] = a[i].val(); for (int i = 0; i < m; i++) bi[i] = b[i].val(); auto ntt0 = nttconv_<nttprimes[0]>(ai, bi); auto ntt1 = nttconv_<nttprimes[1]>(ai, bi); auto ntt2 = nttconv_<nttprimes[2]>(ai, bi); a.resize(n + m - 1); for (int i = 0; i < n + m - 1; i++) a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod); } return a; } template <typename MODINT> std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) { return nttconv<MODINT>(a, b, false); } #line 4 "convolution/multivar_ntt.hpp" #include <numeric> #line 6 "convolution/multivar_ntt.hpp" // CUT begin // Multivariate convolution (Linear, overflow cutoff) // Complexity: $O(kN \log N + k^2 N)$ // Note that the vectors store the infomation in **column-major order** // Implementation idea: https://rushcheyo.blog.uoj.ac/blog/6547 // Details of my implementation: https://hitonanode.github.io/cplib-cpp/convolution/multivar_ntt.hpp template <typename MODINT> struct multivar_ntt { int K, N, fftlen; std::vector<int> dim; std::vector<int> chi; MODINT invfftlen; private: void _initialize(const std::vector<int> &dim_) { dim = dim_; K = dim_.size(); N = std::accumulate(dim_.begin(), dim_.end(), 1, [&](int l, int r) { return l * r; }); fftlen = 1; while (fftlen < N * 2) fftlen <<= 1; invfftlen = MODINT(fftlen).inv(); chi.resize(fftlen); int t = 1; for (auto d : dim_) { t *= d; for (int s = t; s < fftlen; s += t) chi[s] += 1; } for (int i = 0; i + 1 < fftlen; i++) { chi[i + 1] += chi[i]; if (chi[i + 1] >= K) chi[i + 1] -= K; } } std::vector<MODINT> _convolve(const std::vector<MODINT> &f, const std::vector<MODINT> &g) const { assert(int(f.size()) == N); assert(int(g.size()) == N); if (dim.empty()) return {f[0] * g[0]}; std::vector<std::vector<MODINT>> fex(K, std::vector<MODINT>(fftlen)), gex(K, std::vector<MODINT>(fftlen)); for (int i = 0; i < N; i++) fex[chi[i]][i] = f[i], gex[chi[i]][i] = g[i]; for (auto &vec : fex) ntt(vec, false); for (auto &vec : gex) ntt(vec, false); std::vector<std::vector<MODINT>> hex(K, std::vector<MODINT>(fftlen)); for (int df = 0; df < K; df++) { for (int dg = 0; dg < K; dg++) { int dh = (df + dg < K) ? df + dg : df + dg - K; for (int i = 0; i < fftlen; i++) hex[dh][i] += fex[df][i] * gex[dg][i]; } } for (auto &vec : hex) ntt(vec, true); std::vector<MODINT> ret(N); for (int i = 0; i < N; i++) ret[i] = hex[chi[i]][i]; return ret; } public: multivar_ntt(const std::vector<int> &dim_) { _initialize(dim_); } std::vector<MODINT> operator()(const std::vector<MODINT> &f, const std::vector<MODINT> &g) const { return _convolve(f, g); } };