This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub hitonanode/cplib-cpp
#define PROBLEM "https://judge.yosupo.jp/problem/assignment" #include "combinatorial_opt/linear_sum_assignment.hpp" #include "utilities/reader.hpp" #include "utilities/writer.hpp" #include <vector> using namespace std; int main() { const int N = rdi(); vector A(N, vector<long long>(N)); for (auto &v : A) { for (auto &x : v) x = rdi(); } auto [ret, vs, f, g] = linear_sum_assignment::solve(N, N, A); wt_integer(ret, '\n'); for (int i = 0; i < N - 1; ++i) wt_integer(vs.at(i), ' '); wt_integer(vs.back(), '\n'); }
#line 1 "combinatorial_opt/test/linear_sum_assignment.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/assignment" #line 2 "combinatorial_opt/linear_sum_assignment.hpp" #include <cassert> #include <tuple> #include <vector> namespace linear_sum_assignment { template <class T> T augment(int nr, int nc, const std::vector<std::vector<T>> &C, std::vector<T> &f, std::vector<T> &g, int s, std::vector<int> &mate, std::vector<int> &mate_inv) { assert(0 <= s and s < nr); assert(mate.at(s) < 0); static std::vector<T> dist; static std::vector<int> prv; dist.resize(nc); prv.resize(nc); f.at(s) = C.at(s).at(0) - g.at(0); for (int j = 1; j < nc; ++j) f.at(s) = std::min(f.at(s), C.at(s).at(j) - g.at(j)); for (int j = 0; j < nc; ++j) { dist.at(j) = C.at(s).at(j) - f.at(s) - g.at(j); prv.at(j) = s; } std::vector<bool> done(nc); int t = -1; std::vector<int> stk; while (t == -1) { int j1 = -1; for (int j = 0; j < nc; ++j) { if (done.at(j)) continue; if (j1 == -1 or dist.at(j) < dist.at(j1) or (dist.at(j) == dist.at(j1) and mate_inv.at(j) < 0)) { j1 = j; } } if (j1 == -1) return false; if (mate_inv.at(j1) < 0) { t = j1; break; } done.at(j1) = 1; stk = {j1}; while (!stk.empty()) { const int i = mate_inv.at(stk.back()); if (i < 0) { t = stk.back(); break; } stk.pop_back(); for (int j = 0; j < nc; ++j) { if (done.at(j)) continue; const T len = C.at(i).at(j) - f.at(i) - g.at(j); if (dist.at(j) > dist.at(j1) + len) { dist.at(j) = dist.at(j1) + len; prv.at(j) = i; } if (len == T()) { stk.push_back(j); done.at(j) = 1; } } } } const T len = dist.at(t); f.at(s) += len; T ret = len; for (int j = 0; j < nc; ++j) { if (!done.at(j)) continue; g.at(j) -= len - dist.at(j); if (mate_inv.at(j) >= 0) { f.at(mate_inv.at(j)) += len - dist.at(j); } else { ret -= len - dist.at(j); } } for (int cur = t; cur >= 0;) { const int i = prv.at(cur); mate_inv.at(cur) = i; if (i == -1) break; std::swap(cur, mate.at(i)); } return ret; } // Complexity: O(nr^2 nc) template <class T> std::tuple<T, std::vector<int>, std::vector<T>, std::vector<T>> _solve(int nr, int nc, const std::vector<std::vector<T>> &C) { assert(nr <= nc); std::vector<int> mate(nr, -1); std::vector<int> mate_inv(nc, -1); std::vector<T> f(nr), g(nc); // dual variables, f[i] + g[j] <= C[i][j] holds if (nr == 0 or nc == 0) return {T(), mate, f, g}; if (nr == nc) { // Column reduction for (int j = nc - 1; j >= 0; --j) { g.at(j) = C.at(0).at(j) - f.at(0); int imin = 0; for (int i = 1; i < nr; ++i) { if (g.at(j) > C.at(i).at(j) - f.at(i)) { imin = i; g.at(j) = C.at(i).at(j) - f.at(i); } } if (mate.at(imin) < 0) { mate.at(imin) = j; mate_inv.at(j) = imin; } else if (g.at(j) < g.at(mate.at(imin))) { mate_inv.at(mate.at(imin)) = -1; mate.at(imin) = j; mate_inv.at(j) = imin; } } // Reduction transfer (can be omitted) if (nc > 1) { for (int i = 0; i < nr; ++i) { if (mate.at(i) < 0) continue; T best = C.at(i).at(0) - g.at(0), second_best = C.at(i).at(1) - g.at(1); int argbest = 0; if (best > second_best) std::swap(best, second_best), argbest = 1; for (int j = 2; j < nc; ++j) { if (T val = C.at(i).at(j) - g.at(j); val < best) { second_best = best; best = val; argbest = j; } else if (val < second_best) { second_best = val; } } g.at(argbest) -= second_best - best; f.at(i) = second_best; } } // Augmenting row reduction: not implemented } // Augmentation for (int i = 0; i < nr; ++i) { if (mate.at(i) < 0) augment(nr, nc, C, f, g, i, mate, mate_inv); } T ret = 0; for (int i = 0; i < nr; ++i) ret += C.at(i).at(mate.at(i)); return {ret, mate, std::move(f), std::move(g)}; } // Jonker–Volgenant algorithm: find minimum weight assignment // Dual problem (nr == nc): maximize sum(f) + sum(g) s.t. f_i + g_j <= C_ij // Complexity: O(nr nc min(nr, nc)) template <class T> std::tuple<T, std::vector<int>, std::vector<T>, std::vector<T>> solve(int nr, int nc, const std::vector<std::vector<T>> &C) { const bool transpose = (nr > nc); if (!transpose) return _solve(nr, nc, C); std::vector trans(nc, std::vector<T>(nr)); for (int i = 0; i < nr; ++i) { for (int j = 0; j < nc; ++j) trans.at(j).at(i) = C.at(i).at(j); } auto [v, mate, f, g] = _solve(nc, nr, trans); std::vector<int> mate2(nr, -1); for (int j = 0; j < nc; ++j) { if (mate.at(j) >= 0) mate2.at(mate.at(j)) = j; } return {v, mate2, g, f}; } } // namespace linear_sum_assignment #line 4 "combinatorial_opt/test/linear_sum_assignment.test.cpp" #line 2 "utilities/reader.hpp" #include <cstdio> #include <string> // CUT begin template <typename T> T rd_integer() { T ret = 0; bool minus = false; char c = getchar_unlocked(); while (!isdigit(c)) minus |= (c == '-'), c = getchar_unlocked(); while (isdigit(c)) ret = (ret << 1) + (ret << 3) + (c ^ 48), c = getchar_unlocked(); return minus ? -ret : ret; } int rdi() { return rd_integer<int>(); } long long rdll() { return rd_integer<long long>(); } std::string rdstr() { std::string ret; char c = getchar_unlocked(); while (!isgraph(c)) c = getchar_unlocked(); while (isgraph(c)) ret += c, c = getchar_unlocked(); return ret; } #line 3 "utilities/writer.hpp" template <typename T> void wt_integer(T x, char delim) { if (x == 0) { putchar('0'), putchar(delim); return; } if (x < 0) putchar('-'), x = -x; static char cache[20]; char *head = cache; while (x) *head = '0' + x % 10, head++, x /= 10; while (head != cache) putchar(*(--head)); putchar(delim); } #line 7 "combinatorial_opt/test/linear_sum_assignment.test.cpp" #line 9 "combinatorial_opt/test/linear_sum_assignment.test.cpp" using namespace std; int main() { const int N = rdi(); vector A(N, vector<long long>(N)); for (auto &v : A) { for (auto &x : v) x = rdi(); } auto [ret, vs, f, g] = linear_sum_assignment::solve(N, N, A); wt_integer(ret, '\n'); for (int i = 0; i < N - 1; ++i) wt_integer(vs.at(i), ' '); wt_integer(vs.back(), '\n'); }