This documentation is automatically generated by online-judge-tools/verification-helper
#include "combinatorial_opt/matroid_intersection_dijkstra.hpp"
重み付きマトロイド交叉(交差)問題 (matroid intersection) のソルバ.二つのマトロイド $M_{1} = (E, \mathcal{I}_{1}), M_{2} = (E, \mathcal{I}_{2})$ とそのサイズ $k$ 最大重み共通独立集合 $I_k$ ,および $I_k$ の導出に使われたポテンシャルを入力とし,サイズ $k + 1$ の最大重み共通独立集合を求めるか,これが存在しないことを示す.引数として与えたポテンシャルは適宜更新される.
計算量は $n = |E|$,マトロイドクラスのサーキットクエリ一回あたりの計算量を $c$ として $O(nc + nk \log n)$ である.ポテンシャルの利用により内部で解く最短経路問題の辺重みを全て非負にでき,高速な Dijkstra 法を利用できる.
UserDefinedMatroid m1, m2;
vector<T> weight(n);
vector<T> potential(n + 2); // 2 個の補助頂点のポテンシャルの情報も持つ
vector<bool> I(n);
assert(m1.size() == n);
assert(m2.size() == n);
while (augment_matroid_intersection_dijkstra(m1, m2, I, weight, potential)) {
continue;
}
#pragma once
#include <cassert>
#include <queue>
#include <vector>
// Find maximum weight size k + 1 intersection of two matroids using Dijkstra's algorithm
// Return `true` iff larger intersection is found.
// Complexity: O(Cn + nk log n) (C: circuit query)
template <class Matroid1, class Matroid2, class T = int>
bool augment_matroid_intersection_dijkstra(
Matroid1 &m1, // Matroid, size n, updated
Matroid2 &m2, // Matroid, size n, updated
std::vector<bool> &I, // Size k maximum weight intersection, size n, updated
const std::vector<T> &weight, // Weights of elements, size n
std::vector<T> &potential // Potential, size n + 2, updated
) {
const int n = I.size();
assert((int)m1.size() == n);
assert((int)m2.size() == n);
assert((int)weight.size() == n);
assert(potential.empty() or ((int)potential.size() == n) or ((int)potential.size() == n + 2));
m1.set(I);
m2.set(I);
potential.resize(n + 2);
auto l = [&](int e) -> T { return e < n ? (I.at(e) ? weight.at(e) : -weight.at(e)) : T(); };
auto edge_len = [&](int s, int t) -> T { return l(t) - potential.at(t) + potential.at(s); };
if (true) { // 自明な追加が可能かチェック(省略してもアルゴリズムは正当)
int max_elem = -1;
for (int e = 0; e < n; ++e) {
if (!I.at(e) and (max_elem < 0 or weight.at(max_elem) < weight.at(e))) max_elem = e;
}
if (max_elem < 0) return false;
for (int e = 0; e < n; ++e) {
if (!I.at(e) and weight.at(e) == weight.at(max_elem) and m1.circuit(e).empty() and
m2.circuit(e).empty()) {
potential.at(e) -= l(e);
I.at(e) = true;
return true;
}
}
}
// Find minimum length (& minimum num. of vertices) gs-gt path
const int gs = n, gt = n + 1;
std::vector<std::vector<int>> to(gt + 1);
bool has_gs_edge = false, has_gt_edge = false;
for (int e = 0; e < n; ++e) {
if (I.at(e)) continue;
const auto c1 = m1.circuit(e), c2 = m2.circuit(e);
if (c1.empty()) {
to.at(e).push_back(gt);
if (!has_gt_edge) {
has_gt_edge = true;
potential.at(gt) = potential.at(e);
}
if (T el = edge_len(e, gt); el < T()) potential.at(gt) += el;
}
for (int f : c1) {
if (f != e) to.at(e).push_back(f);
}
if (c2.empty()) {
to.at(gs).push_back(e);
if (!has_gs_edge) {
has_gs_edge = true;
potential.at(gs) = potential.at(e) - l(e);
}
if (T el = edge_len(gs, e); el < T()) potential.at(gs) -= el;
}
for (int f : c2) {
if (f != e) to.at(f).push_back(e);
}
}
if (const T e0 = potential.at(gs); e0 != T()) {
for (auto &p : potential) p -= e0;
}
if (!has_gs_edge or !has_gt_edge) return false;
std::vector<bool> potential_fixed(gt + 1);
T potential_add_unfixed_es = T();
auto fix_potential = [&](int e) -> void {
assert(!potential_fixed.at(e));
potential_fixed.at(e) = true;
potential.at(e) += potential_add_unfixed_es;
};
std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<>> pq;
std::vector<T> dijkstra(gt + 1);
std::vector<int> prv(gt + 1, -1);
pq.emplace(T(), gs);
while (!pq.empty()) {
const int e = pq.top().second;
pq.pop();
if (potential_fixed.at(e)) continue;
if (e != gs) potential_add_unfixed_es = edge_len(prv.at(e), e);
std::vector<std::pair<int, int>> push_cands;
auto rec = [&](auto &&self, int cur) -> bool {
if (cur == gt) return true;
fix_potential(cur);
for (int nxt : to.at(cur)) {
if (potential_fixed.at(nxt)) continue;
const T len = edge_len(cur, nxt) - potential_add_unfixed_es;
// if (len < T()) std::cerr << cur << ' ' << nxt << ' ' << len << std::endl;
assert(len >= T());
if (len == T()) {
prv.at(nxt) = cur;
if (self(self, nxt)) return true;
} else {
if (prv.at(nxt) == -1 or potential_add_unfixed_es + len < dijkstra.at(nxt)) {
dijkstra.at(nxt) = potential_add_unfixed_es + len;
prv.at(nxt) = cur;
push_cands.emplace_back(nxt, cur);
}
}
}
return false;
};
if (rec(rec, e)) break;
for (auto [nxt, now] : push_cands) {
if (prv.at(nxt) == now) pq.emplace(dijkstra.at(nxt), nxt);
}
}
for (int e = 0; e < gt + 1; ++e) {
if (!potential_fixed.at(e)) fix_potential(e);
}
if (prv.at(gt) < 0) return false;
prv.assign(gt + 1, -1);
std::queue<int> q;
q.push(gs);
for (int now = q.front(); now != gt; now = q.front()) {
q.pop();
for (int nxt : to.at(now)) {
if (prv.at(nxt) == -1 and edge_len(now, nxt) == T()) {
prv.at(nxt) = now;
q.push(nxt);
}
}
}
for (int e = prv.at(gt); e != gs; e = prv.at(e)) {
potential.at(e) -= l(e);
I.at(e) = !I.at(e);
}
return true;
}
#line 2 "combinatorial_opt/matroid_intersection_dijkstra.hpp"
#include <cassert>
#include <queue>
#include <vector>
// Find maximum weight size k + 1 intersection of two matroids using Dijkstra's algorithm
// Return `true` iff larger intersection is found.
// Complexity: O(Cn + nk log n) (C: circuit query)
template <class Matroid1, class Matroid2, class T = int>
bool augment_matroid_intersection_dijkstra(
Matroid1 &m1, // Matroid, size n, updated
Matroid2 &m2, // Matroid, size n, updated
std::vector<bool> &I, // Size k maximum weight intersection, size n, updated
const std::vector<T> &weight, // Weights of elements, size n
std::vector<T> &potential // Potential, size n + 2, updated
) {
const int n = I.size();
assert((int)m1.size() == n);
assert((int)m2.size() == n);
assert((int)weight.size() == n);
assert(potential.empty() or ((int)potential.size() == n) or ((int)potential.size() == n + 2));
m1.set(I);
m2.set(I);
potential.resize(n + 2);
auto l = [&](int e) -> T { return e < n ? (I.at(e) ? weight.at(e) : -weight.at(e)) : T(); };
auto edge_len = [&](int s, int t) -> T { return l(t) - potential.at(t) + potential.at(s); };
if (true) { // 自明な追加が可能かチェック(省略してもアルゴリズムは正当)
int max_elem = -1;
for (int e = 0; e < n; ++e) {
if (!I.at(e) and (max_elem < 0 or weight.at(max_elem) < weight.at(e))) max_elem = e;
}
if (max_elem < 0) return false;
for (int e = 0; e < n; ++e) {
if (!I.at(e) and weight.at(e) == weight.at(max_elem) and m1.circuit(e).empty() and
m2.circuit(e).empty()) {
potential.at(e) -= l(e);
I.at(e) = true;
return true;
}
}
}
// Find minimum length (& minimum num. of vertices) gs-gt path
const int gs = n, gt = n + 1;
std::vector<std::vector<int>> to(gt + 1);
bool has_gs_edge = false, has_gt_edge = false;
for (int e = 0; e < n; ++e) {
if (I.at(e)) continue;
const auto c1 = m1.circuit(e), c2 = m2.circuit(e);
if (c1.empty()) {
to.at(e).push_back(gt);
if (!has_gt_edge) {
has_gt_edge = true;
potential.at(gt) = potential.at(e);
}
if (T el = edge_len(e, gt); el < T()) potential.at(gt) += el;
}
for (int f : c1) {
if (f != e) to.at(e).push_back(f);
}
if (c2.empty()) {
to.at(gs).push_back(e);
if (!has_gs_edge) {
has_gs_edge = true;
potential.at(gs) = potential.at(e) - l(e);
}
if (T el = edge_len(gs, e); el < T()) potential.at(gs) -= el;
}
for (int f : c2) {
if (f != e) to.at(f).push_back(e);
}
}
if (const T e0 = potential.at(gs); e0 != T()) {
for (auto &p : potential) p -= e0;
}
if (!has_gs_edge or !has_gt_edge) return false;
std::vector<bool> potential_fixed(gt + 1);
T potential_add_unfixed_es = T();
auto fix_potential = [&](int e) -> void {
assert(!potential_fixed.at(e));
potential_fixed.at(e) = true;
potential.at(e) += potential_add_unfixed_es;
};
std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<>> pq;
std::vector<T> dijkstra(gt + 1);
std::vector<int> prv(gt + 1, -1);
pq.emplace(T(), gs);
while (!pq.empty()) {
const int e = pq.top().second;
pq.pop();
if (potential_fixed.at(e)) continue;
if (e != gs) potential_add_unfixed_es = edge_len(prv.at(e), e);
std::vector<std::pair<int, int>> push_cands;
auto rec = [&](auto &&self, int cur) -> bool {
if (cur == gt) return true;
fix_potential(cur);
for (int nxt : to.at(cur)) {
if (potential_fixed.at(nxt)) continue;
const T len = edge_len(cur, nxt) - potential_add_unfixed_es;
// if (len < T()) std::cerr << cur << ' ' << nxt << ' ' << len << std::endl;
assert(len >= T());
if (len == T()) {
prv.at(nxt) = cur;
if (self(self, nxt)) return true;
} else {
if (prv.at(nxt) == -1 or potential_add_unfixed_es + len < dijkstra.at(nxt)) {
dijkstra.at(nxt) = potential_add_unfixed_es + len;
prv.at(nxt) = cur;
push_cands.emplace_back(nxt, cur);
}
}
}
return false;
};
if (rec(rec, e)) break;
for (auto [nxt, now] : push_cands) {
if (prv.at(nxt) == now) pq.emplace(dijkstra.at(nxt), nxt);
}
}
for (int e = 0; e < gt + 1; ++e) {
if (!potential_fixed.at(e)) fix_potential(e);
}
if (prv.at(gt) < 0) return false;
prv.assign(gt + 1, -1);
std::queue<int> q;
q.push(gs);
for (int now = q.front(); now != gt; now = q.front()) {
q.pop();
for (int nxt : to.at(now)) {
if (prv.at(nxt) == -1 and edge_len(now, nxt) == T()) {
prv.at(nxt) = now;
q.push(nxt);
}
}
}
for (int e = prv.at(gt); e != gs; e = prv.at(e)) {
potential.at(e) -= l(e);
I.at(e) = !I.at(e);
}
return true;
}