This documentation is automatically generated by online-judge-tools/verification-helper
#include "combinatorial_opt/convex_sum.hpp"
コスト関数
$\displaystyle y = \sum_{i=1}^N \sum_{j=1}^{k_i} f_i (x_{ij}) $
を,等式制約 $\displaystyle \sum_{i=1}^N \sum_{j=1}^{k_i} x_{ij} = C$ のもと最小化する.
#pragma once
#include <cassert>
#include <utility>
#include <vector>
// ax^2 + bx + c (convex), lb <= x <= ub
struct Quadratic {
using Int = long long;
Int a, b, c, lb, ub;
Quadratic(Int a, Int b, Int c, Int lb, Int ub) : a(a), b(b), c(c), lb(lb), ub(ub) {}
Int slope(Int s) const noexcept {
if (a == 0) return b <= s ? ub : lb;
auto ret = (s + a - b) / (a * 2);
return ret > ub ? ub : ret < lb ? lb : ret;
}
Int eval(Int x) const noexcept { return (a * x + b) * x + c; }
// f(x) - f(x - 1)
Int next_cost(Int x) const noexcept { return 2 * a * x - a + b; }
};
// x^3 - ax, x \geq 0 (convex)
struct Cubic {
int a, lb, ub;
Cubic(int a, int ub) : a(a), lb(0), ub(ub) {}
int slope(long long s) const noexcept {
int lo = lb, hi = ub + 1;
while (hi - lo > 1) {
int x = (lo + hi) / 2;
(next_cost(x) <= s ? lo : hi) = x;
}
return lo;
}
long long eval(long long x) const noexcept { return (x * x - a) * x; }
// f(x) - f(x - 1)
long long next_cost(long long x) const noexcept { return 3 * x * x - 3 * x + 1 - a; }
};
// \minimize $\sum_i \sum_j^{k_i} f_i(x_{ij})$
// https://codeforces.com/contest/1344/problem/D
// https://yukicoder.me/problems/no/1495
// return: (y, [[(x_i, # of such x_i), ... ], ...])
template <typename F, typename Int, Int INF>
std::pair<Int, std::vector<std::vector<std::pair<Int, Int>>>>
MinConvexSumUnderLinearConstraint(const std::vector<Int> &k, const std::vector<F> &f, Int C) {
assert(k.size() == f.size());
assert(k.size() > 0);
Int lbsum = 0, ubsum = 0;
for (auto func : f) lbsum += func.lb, ubsum += func.ub;
if (lbsum > C or ubsum < C) return {};
const int N = k.size();
Int few = -INF, enough = INF;
while (enough - few > 1) {
auto slope = few + (enough - few) / 2;
Int cnt = 0;
for (int i = 0; i < N; i++) {
auto tmp = f[i].slope(slope);
cnt += tmp * k[i];
if (cnt >= C) break;
}
(cnt >= C ? enough : few) = slope;
}
std::vector<std::vector<std::pair<Int, Int>>> ret(N);
std::vector<int> additional;
Int ctmp = 0;
Int sol = 0;
for (int i = 0; i < N; i++) {
auto xlo = f[i].slope(few);
auto xhi = f[i].slope(few + 1);
ctmp += k[i] * xlo;
ret[i].emplace_back(xlo, k[i]);
if (xlo < xhi) additional.push_back(i);
sol += k[i] * f[i].eval(xlo);
}
sol += (C - ctmp) * (few + 1);
while (additional.size()) {
int i = additional.back();
additional.pop_back();
Int add = C - ctmp > k[i] ? k[i] : C - ctmp;
auto x = ret[i][0].first;
if (add) {
ret[i][0].second -= add;
if (ret[i][0].second == 0) ret[i].pop_back();
ret[i].emplace_back(x + 1, add);
ctmp += add;
}
}
return {sol, ret};
}
#line 2 "combinatorial_opt/convex_sum.hpp"
#include <cassert>
#include <utility>
#include <vector>
// ax^2 + bx + c (convex), lb <= x <= ub
struct Quadratic {
using Int = long long;
Int a, b, c, lb, ub;
Quadratic(Int a, Int b, Int c, Int lb, Int ub) : a(a), b(b), c(c), lb(lb), ub(ub) {}
Int slope(Int s) const noexcept {
if (a == 0) return b <= s ? ub : lb;
auto ret = (s + a - b) / (a * 2);
return ret > ub ? ub : ret < lb ? lb : ret;
}
Int eval(Int x) const noexcept { return (a * x + b) * x + c; }
// f(x) - f(x - 1)
Int next_cost(Int x) const noexcept { return 2 * a * x - a + b; }
};
// x^3 - ax, x \geq 0 (convex)
struct Cubic {
int a, lb, ub;
Cubic(int a, int ub) : a(a), lb(0), ub(ub) {}
int slope(long long s) const noexcept {
int lo = lb, hi = ub + 1;
while (hi - lo > 1) {
int x = (lo + hi) / 2;
(next_cost(x) <= s ? lo : hi) = x;
}
return lo;
}
long long eval(long long x) const noexcept { return (x * x - a) * x; }
// f(x) - f(x - 1)
long long next_cost(long long x) const noexcept { return 3 * x * x - 3 * x + 1 - a; }
};
// \minimize $\sum_i \sum_j^{k_i} f_i(x_{ij})$
// https://codeforces.com/contest/1344/problem/D
// https://yukicoder.me/problems/no/1495
// return: (y, [[(x_i, # of such x_i), ... ], ...])
template <typename F, typename Int, Int INF>
std::pair<Int, std::vector<std::vector<std::pair<Int, Int>>>>
MinConvexSumUnderLinearConstraint(const std::vector<Int> &k, const std::vector<F> &f, Int C) {
assert(k.size() == f.size());
assert(k.size() > 0);
Int lbsum = 0, ubsum = 0;
for (auto func : f) lbsum += func.lb, ubsum += func.ub;
if (lbsum > C or ubsum < C) return {};
const int N = k.size();
Int few = -INF, enough = INF;
while (enough - few > 1) {
auto slope = few + (enough - few) / 2;
Int cnt = 0;
for (int i = 0; i < N; i++) {
auto tmp = f[i].slope(slope);
cnt += tmp * k[i];
if (cnt >= C) break;
}
(cnt >= C ? enough : few) = slope;
}
std::vector<std::vector<std::pair<Int, Int>>> ret(N);
std::vector<int> additional;
Int ctmp = 0;
Int sol = 0;
for (int i = 0; i < N; i++) {
auto xlo = f[i].slope(few);
auto xhi = f[i].slope(few + 1);
ctmp += k[i] * xlo;
ret[i].emplace_back(xlo, k[i]);
if (xlo < xhi) additional.push_back(i);
sol += k[i] * f[i].eval(xlo);
}
sol += (C - ctmp) * (few + 1);
while (additional.size()) {
int i = additional.back();
additional.pop_back();
Int add = C - ctmp > k[i] ? k[i] : C - ctmp;
auto x = ret[i][0].first;
if (add) {
ret[i][0].second -= add;
if (ret[i][0].second == 0) ret[i].pop_back();
ret[i].emplace_back(x + 1, add);
ctmp += add;
}
}
return {sol, ret};
}